对于图像的分割有阈值分割法、聚类分割法、区域生长分割法、边缘检测分割法和基于神经网络的分割法。大多数都是基于普通的灰度图进行分割,这种方法对于一些彩色图像则难以取得理想效果。对于彩色图像分割,选取适当的颜色空间和颜色分量,会取得事半功倍的效果。有学者将 Lab 颜色模型用于基于颜色的物体识别;Amruta B. Patil 等人[3]运用 Lab 颜色模型和 OTSU 法做了花朵图像分割,但没有考虑到必要的形态学操作,导致分割出的图像杂乱而不精准,经常将花卉的枝叶等包含在内;AsmaNajjar 等采用了 Lab 颜色模型,但实验中花朵颜色单一,也没有总结出颜色与分量的对应关系,无法进一步提供有价值的参考;张娟[5]等提出一种基于颜色和纹理的自然背景下的梅花花朵分割算法。该算法综合运用了分形纹理和颜色 2 种特征,有效分割背景图像中的干扰物,实现梅花图像分割。还有基于花朵纹理、形状、轮廓的分割,但算法复杂,且对图像拍摄的要求很高。
花朵颜色复杂,具有特殊性。自然条件下,花朵图像背景主要以绿色叶片为主。文章抓住了图像中花朵与背景颜色的差异进行分割。 选择了色域广、符合人类视觉系统的 Lab 均匀颜色空间,用 OTSU 算法对图像的 L、a、b 分量依次分割,然后选取最优二值图,配以形态学操作,最终得到理想的分割效果图。
Lab 颜色模型
Lab 颜色空间是一种与设备无关的颜色空间,它对颜色的表达与人眼对颜色的感知非常接近, 视觉上近似的两种颜色在 Lab 空间上位置相邻、距离较小,反之亦然。花朵自身色彩极其复杂、颜色多变,既是图像分割的困难所在,也是可以利用的优势。 综合考虑,选取了 Lab 颜色空间。Lab 颜色空间由亮度通道(L)、红绿色通道(a)、黄蓝色通道(b)组成,如图 2 所示。L 通道表示亮度,值域为[0,100],0 为黑色 100 为白色;a 通道表示从红色(+)至绿色(-)的范围;b 通道表示从黄色(+)至蓝色(-)的范围。 a 和 b 的值域都是[-128,127]。 其中,a=127 是红色,渐渐过渡到-128,变成绿色。 同理,b=127是黄色,-128 是蓝色。 对于 RGB 图像,先将 RGB 转换到 XYZ 空间,然后再由 XYZ 空间转换到 Lab 颜色空间,公式为
其中,aij 与成像印件系统的色度学特性相关。
其中,Xn,Yn,Zn 为白光条件下的刺激值;L∈[0,100],a∈[-128,127],b∈[-128,127]。
对于对Lab颜色模式中的a、b通道还是有点不清楚的同学,可以参考这篇http://blog.sina.com.cn/s/blog_53082f7a0102y60b.html。
Lab和RGB的本质区别
Lab的三个通道分别代表:L是明度,A是红绿,B是黄蓝。
在Lab模式下的曲线,因为明度是单独保存在L通道里面的,所以我们可以在不改变色彩信息的前提下调整明度。同样的,我们也可以在不改变明度的情况下调整色彩。这是RGB模式下曲线无法做到的,因为RGB的三个通道分别保存的是红绿蓝三原色。
Lab下的a通道保存绿与红,曲线的0点原点在线的中点,原点以上的线数用正数标记,代表红色,绝对值越大,色彩越浓。原点以下的线数值负数标记,代表绿色,绝对值越大,色彩越浓。b通道可以类推。所以Lab下的a、b通道是一根曲线调两个原色。调整原理也和RGB下的曲线调整完全不能等同。rgb是加红等于减青,加蓝等于减黄,提亮度必然色淡,加暗必然色浓。Lab则不然,调亮度只影响明度,根本不会影响其他颜色信息。