1. 假设有数组a=[5,3,4,7,6,2,8,4],对数据a进行排序后累加操作:
import numpy as np
a = [5,3,4,7,6,2,8,4]
cum_a = np.cumsum(sorted(a))
print(cum_a)
输出结果如下:
![]()
2. 当数据为多维的时候,可以根据自己的需求,对属性进行排序后进行累加操作:
导入数据->显示数据->根据需求进行累加求和
import numpy as np
data = np.loadtxt('data.txt')
print(data)

按照不同的age累计求取times:
data['sum_times'] = data['times'].groupby(['age']).cumsum()
注:loadtxt(fname, dtype=<type 'float'>, comments='#', delimiter=None, converters=None, skipprows=0, usecols= None, unpack=False, ndim=0)
可以设置下载的选项;
fname:支持数据文件,包括gz和bz格式;
本文介绍了使用Python的NumPy库进行数组排序及累加的方法,并展示了如何对一维和多维数据进行操作。对于一维数组,通过sorted()和cumsum()函数组合实现了排序后的累加效果;对于多维数据,则演示了如何根据特定属性进行排序和累加。

1932

被折叠的 条评论
为什么被折叠?



