VIBE改进算法

参看《Background subtraction:experiments and improvements for vibe》,总结出来的。

Vibe的改进

 

 

 

  • Updating factor 由20降低到5或1,可以加快背景学习速度;

 

  • 区分分割模型和更新背景模型

背景减的目标是获取前景运动目标,大多数情况得到的分割模块就是我们寻找的检测目标,一般情况下都利用获得的前景目标做为更新背景模型,来进行背景更新。但这不是所有情况,所以作者对分割模型(提取的运动目标)和更新背景模型进行区分。但需要指出的是前景像素永远不能用来更新模型。

 

  • 级联滤波器

 

  • 前分割模型:删除区域块小于或等于10像素的景目标,对小于或等于20的目标块进行漏洞填充。
  • 背景更新模块:对小于或等于50的目标块进行漏洞填充。这主要是为了减少前景误判为背景的错误。对所有的前景模块都进行保留,前景像素值永远不要填充到背景模块中。

 

 

  • 抑制传播

该方法主要应用于运动目标块静止,但又想保留其作为前景运动目标。由于vibe采用八邻域进行更新,并对更新的邻域位置不进行判断,如果一旦两个背景像素更新到前景区域某一像素点上,则该点会被误判为背景,所以在目标块的边界处会产生腐蚀的效果。作者的改进方法是计算背景模块的梯度,当梯度大于50时抑制邻域更新。下图为采用该方法得到的结果,从图中可以看出背景种子在前景中的传播得到了抑制。

 

  • 距离计算和自适应阈值

由于简单的欧式距离对某些应用场合不适用,作者采用codebook中的颜色失真来计算分析前景运动目标。

当颜色失真值小于20时认为像素值相近,认定为背景。由于背景图像的不一致性,以自适应的阈值代替原来固定的距离判定阈值,阈值大小与样本集的方差成正比,样本集方差越大,说明背景越复杂,判定阈值应该越大。

 

  • 解决闪烁背景误报

闪烁像素是像素经常在背景和前景中切换,作者采用的方法是首先判断闪烁像素。先存储一张背景更新模板和一个闪烁图(像素级),遍历当前背景更新模板,当某一像素是待更新的背景像素,则判断该像素点在上一帧的背景更新模板中与当前帧是否相同,如果不同则闪烁级增加15(闪烁级在[0,150]之间),否则闪烁级减1。如果闪烁级大于等于30则被判断为闪烁点。下图为该方法应用于水面。

 

 

vibe算法是一种用于目标检测和跟踪的算法,它基于背景模型和像素的相似度来判断是否为前景像素。针对vibe算法改进可以从以下几个方面考虑: 1. 背景模型更新策略:vibe算法使用了很简单的随机采样方法来更新背景模型,可以尝试更复杂的模型更新策略,例如利用递归滤波或卡尔曼滤波来提高背景的准确性。 2. 像素相似度计算方法:vibe算法使用了基于颜色直方图的方法来计算像素的相似度,可以考虑引入其他更高效准确的相似度计算方法,例如局部二值模式(LBP)或高斯混合模型(GMM)。 3. 前景区域分割:vibe算法在输出前景时,通常会得到一些噪点或无关的区域,可以通过引入形态学操作或连通性分析等方法对前景区域进行进一步的处理和优化。 4. 自适应参数设置:vibe算法的性能很大程度上依赖于参数的设置,可以考虑引入自适应的参数调整策略,根据场景的变化动态地调整算法的参数,以提高算法的适应性和性能。 5. 并行化实现:vibe算法可以通过并行化实现来加速计算过程,例如使用GPU或多线程技术来提高算法的运行速度。 综上所述,针对vibe算法改进可以从背景模型更新策略、像素相似度计算方法、前景区域分割、自适应参数设置和并行化实现等方面进行优化,以提高算法的准确性、鲁棒性和实时性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值