Lime 代码

import lime
from lime import lime_image

explainer = lime_image.LimeImageExplainer()
explanation = explainer.explain_instance(image, classifier_fn, labels=(1,),
                         hide_color=None,
                         top_labels=5, num_features=100000, num_samples=1000,
                         batch_size=10,
                         segmentation_fn=None,
                         distance_metric='cosine',
                         model_regressor=None,
                         random_seed=None)

参数说明:

image:待解释图像

classifier_fn:分类器

labels:可解析标签

hide_color:隐藏颜色

top_labels:预测概率最高的K个标签生成解释

num_features:说明中出现的最大功能数

num_samples:学习线性模型的邻域大小

batch_size:批处理大小

distance_metric:距离度量

model_regressor:模型回归器,默认为岭回归

segmentation_fn:分段,将图像分为多个大小

random_seed:随机整数,用作分割算法的随机种子

具体实现过程如下,我用lime查看我自己训练的efficientB1模型,具体代码如下:

"""
可解释模型算法
"""
import lime
from lime import lime_image
import numpy as np
from keras.preprocessing import image
import matplotlib.pyplot as plt
from skimage.segmentation import mark_boundaries
import PIL.Image as Image
from keras.applications.densenet import preprocess_input
from keras.models import load_model
from nets import efficientnet


def transform_img_fn(img_name,model):
    out = []
    img = image.load_img(img_name,target_size=(240,240))
    x = image.img_to_array(img)
    x = np.expand_dims(x,axis=0)
    x = preprocess_input(x)
    #out.append(x)
    #return np.vstack(out)
    return x

if __name__ == '__main__':
    img_name = r"15_sr.png"
    model_predict_01 = load_model("EfficientNetB1.model")       #加载模型
    images = transform_img_fn(img_name,model_predict_01)
    explainer = lime_image.LimeImageExplainer()
    x = images[0].astype(np.double)
    explanation = explainer.explain_instance(x,model_predict_01.predict,top_labels=5,hide_color=0,num_samples=1000)
    print(explanation)
    #对图像分类结果进行解释
    temp,mask = explanation.get_image_and_mask(explanation.top_labels[0],positive_only=True, negative_only=False,num_features=5,hide_rest=False)
    img = io.imread(img_name)
    img = transform.resize(img, (240,240))
    image = img_as_float(img)
    plt.imsave("out.jpg",mark_boundaries(image,mask))

解析的结果如下:

 

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
好的,以下是一个基于卷积神经网络的LIME代码示例: 首先,我们需要安装必要的包:lime、numpy、tensorflow ```python pip install lime pip install numpy pip install tensorflow ``` 然后,我们可以使用一个简单的卷积神经网络模型,用于分类图像。这里我们使用Keras库创建一个简单的CNN,对MNIST数据集中的手写数字进行分类: ```python import keras from keras.datasets import mnist from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D, MaxPooling2D # Load the MNIST dataset (x_train, y_train), (x_test, y_test) = mnist.load_data() # Normalize the input data x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. # Reshape the input data to fit the model x_train = x_train.reshape(x_train.shape[0], 28, 28, 1) x_test = x_test.reshape(x_test.shape[0], 28, 28, 1) # Convert the output labels to one-hot encoding num_classes = 10 y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) # Define the CNN model model = Sequential() model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(num_classes, activation='softmax')) # Compile the model model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) # Train the model model.fit(x_train, y_train, batch_size=128, epochs=10, verbose=1, validation_data=(x_test, y_test)) # Evaluate the model on the test data score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) ``` 现在,我们可以使用LIME来解释模型的预测结果。首先,我们需要定义一个解释器,它将使用LIME算法来解释CNN对图像的分类结果: ```python import lime from lime import lime_image # Define the explainer function explainer = lime_image.LimeImageExplainer() ``` 接下来,我们可以使用LIME来解释CNN对一个测试图像的分类结果。首先,我们选择一张测试图像,然后使用解释器来生成解释。我们将使用LIME的“explain_instance”函数来生成一个解释,该函数将使用模型的预测函数来预测图像的分类结果,并返回一个解释器对象,该对象包含关于每个像素的重要性分数: ```python import matplotlib.pyplot as plt # Select a test image img = x_test[0] # Generate an explanation using LIME explanation = explainer.explain_instance(img, model.predict, top_labels=5, hide_color=0, num_samples=1000) # Get the image and the explanation image, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True) # Plot the original image and the explanation plt.imshow(img.squeeze(), cmap='gray') plt.title('Original image') plt.show() plt.imshow(mask, cmap='gray') plt.title('Explanation') plt.show() ``` 这将显示原始图像和解释的输出。解释的输出显示了该图像中哪些像素对于CNN的分类结果最重要。在这个示例中,我们只考虑了最有可能的分类结果。如果我们想看看其他可能的分类结果,我们可以使用LIME的“top_labels”参数。 最后,我们可以使用解释器来解释CNN对其他图像的分类结果。这可以通过循环遍历测试数据集中的所有图像来实现: ```python # Loop through the test images and generate explanations for each one for i in range(len(x_test)): img = x_test[i] explanation = explainer.explain_instance(img, model.predict, top_labels=5, hide_color=0, num_samples=1000) image, mask = explanation.get_image_and_mask(explanation.top_labels[0], positive_only=True, num_features=5, hide_rest=True) # Plot the original image and the explanation plt.imshow(img.squeeze(), cmap='gray') plt.title('Original image') plt.show() plt.imshow(mask, cmap='gray') plt.title('Explanation') plt.show() ``` 这将为每个测试图像生成一个解释,并显示原始图像和解释的输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值