人工智能之机器学习(概念整合部分)


前言

在上篇笔记中所提到的关于车牌号码识别已经在奋斗了笔记发表后的数个小时成功完成了。今天学习了更加重要的知识,目前我们先把人工智能的迈入基础(机器学习)做一个分享,在下篇笔记进行更新上篇的相关知识点。


一、机器学习介绍与定义

1、机器学习定义

机器学习(Machine Learning)本质上就是让计算机自己在数据中学习规律,并根据所得到的规律对未来数据进行预测。

机器学习包括如聚类、分类、决策树、贝叶斯、神经网络、深度学习(Deep Learning)等算法。

机器学习的基本思路是模仿人类学习行为的过程,如我们在现实中的新问题一般是通过经验归纳,总结规律,从而预测未来的过程。机器学习的基本过程如下:
在这里插入图片描述

机器学习的发展历史

从机器学习发展的过程上来说,其发展的时间轴如下所示:
在这里插入图片描述
从上世纪50年代的图灵测试提出、塞缪尔开发的西洋跳棋程序,标志着机器学习正式进入发展期。

60年代中到70年代末的发展几乎停滞。

80年代使用神经网络反向传播(BP)算法训练的多参数线性规划(MLP)理念的提出将机器学习带入复兴时期。

90年代提出的“决策树”(ID3算法),再到后来的支持向量机(SVM)算法,将机器学习从知识驱动转变为数据驱动的思路。

21世纪初Hinton提出深度学习(Deep Learning),使得机器学习研究又从低迷进入蓬勃发展期。

从2012年开始,随着算力提升和海量训练样本的支持,深度学习(Deep Learning)成为机器学习研究热点,并带动了产业界的广泛应用。

机器学习分类

机器学习经过几十年的发展,衍生出了很多种分类方法,这里按学习模式的不同,可分为监督学习、半监督学习、无监督学习和强化学习

监督学习

监督学习(Supervised L

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值