P2568&&bzoj2818 GCD

Label

欧拉函数

Description

给定一正整数 n ( 1 ≤ n ≤ 1 0 7 ) n(1\leq n\leq 10^7) n(1n107),请求出:

∑ x , y 1 ≤ x , y ≤ n [ g c d ( x , y ) = = p r i m e ] \sum_{x,y}^{1\leq x,y \leq n}[gcd(x,y)==prime] x,y1x,yn[gcd(x,y)==prime]

Solution

我们将 x , y x,y x,y改写为算术基本定理下的形式后,发现给定的条件有点奇怪:具体来说,如果 d = g c d ( x , y ) d=gcd(x,y) d=gcd(x,y)是个素数,由于 g c d gcd gcd是最大公约数,这也就意味着 x , y x,y x,y各自仅含一个值为 d d d的素因子且 x , y x,y x,y内除 d d d外其它素因子互不相同(即:除了 d d d以外, y y y不含任何可整除 x x x的素因子,反之亦然)。

那么,从包含的因子种类的角度考虑,若 d d d为素数且 g c d ( x , y ) = d gcd(x,y)=d gcd(x,y)=d,那么一定有:
g c d ( x d , y d ) = 1 gcd(\frac{x}{d},\frac{y}{d})=1 gcd(dx,dy)=1

也就是说, x d , y d \frac{x}{d},\frac{y}{d} dx,dy互质。

其实,推得该结论还可以利用 g c d gcd gcd的性质直接推得: g c d ( d x , d y ) = d × g c d ( x , y ) gcd(dx,dy)=d\times gcd(x,y) gcd(dx,dy)=d×gcd(x,y)

既然互质,那么统计答案时我们便可以利用欧拉函数 φ ( 1 ) ∼ φ ( n ) \varphi(1)\sim\varphi(n) φ(1)φ(n)的值了。

枚举所有可能为 g c d ( x , y ) gcd(x,y) gcd(x,y)的素数 d d d,设 t t t [ 1 , n ] [1,n] [1,n]内的素数个数,则:

a n s = t + 2 ∑ d , i = 2 1 ≤ d ≤ n , i × d ≤ n φ ( i ) ans=t+2\sum_{d,i=2}^{1\leq d\leq n,i\times d\leq n}\varphi(i) ans=t+2d,i=21dn,i×dnφ(i)

我们可以利用埃氏筛求 a n s ans ans,但是这样一来复杂度还是比 O ( n ) O(n) O(n)高。

优化:考虑每个小于等于 n n n的素数对答案的贡献,我们可将上面表示 a n s ans ans的式子改写为 ∑ k = 1 t ( ( 2 ∑ i = 1 i × d k ≤ n φ ( i ) ) − 1 ) \sum_{k=1}^{t}((2\sum_{i=1}^{i\times d_k\leq n}\varphi(i))-1) k=1t((2i=1i×dknφ(i))1)(由于题目所求数对有序,故乘2;又由于 ( 1 , 1 ) (1,1) (1,1)会被重复计算,故减1)。这样一来,我们预处理 φ \varphi φ的前缀和 s u m k = ∑ i = 1 k φ ( i ) sum_k=\sum_{i=1}^{k}\varphi(i) sumk=i=1kφ(i),则 a n s = ∑ k = 1 t ( 2 s u m ⌊ n d k ⌋ − 1 ) ans=\sum_{k=1}^{t}(2sum_{\lfloor \frac{n}{d_k}\rfloor}-1) ans=k=1t(2sumdkn1)

程序总复杂度: O ( n ) O(n) O(n)

Summary

1、互质是一个不错的性质,当某个题的条件出现互质时,那么很有可能要利用欧拉函数的性质来推解法;

2、利用算术基本定理将目标数进行质因子分解( p i k p 2 j . . . p n k p_i^kp_2^j...p_n^k pikp2j...pnk)、进而从约数的角度分析条件性质,是一个屡试不爽的办法。

Code

#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;

const int MAXN=1e7+20;
int N,prime[MAXN>>3],phi[MAXN],cnt;
ll sum[MAXN],ans;
bool isprime[MAXN];

void Phi()
{
	isprime[1]=true; phi[1]=1;
	for(ri i=2;i<=N;++i)
	{
		if(!isprime[i])
		{
			prime[++cnt]=i;
			phi[i]=i-1;	
		}
		for(ri j=1;j<=cnt&&i*prime[j]<=N;++j)
		{
			isprime[i*prime[j]]=true;
			if(i%prime[j]==0)	phi[i*prime[j]]=phi[i]*prime[j];
			else	phi[i*prime[j]]=phi[i]*phi[prime[j]];
			if(i%prime[j]==0)	break;
		}
	}
}

int main()
{
	scanf("%d",&N);
	Phi();
	for(ri i=1;i<=N;++i)	sum[i]=sum[i-1]+phi[i];	
	for(ri i=1;i<=cnt;++i)	ans+=2*sum[N/prime[i]]-1;
	cout<<ans;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值