P2398 GCD SUM

Label

欧拉函数

Description

给定整数 n ( 1 ≤ n ≤ 1 0 5 ) n(1\leq n\leq 10^5) n(1n105),求:

∑ i = 1 n ∑ j = 1 n g c d ( i , j ) \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j) i=1nj=1ngcd(i,j)

Solution

看上去此题所求又是一个反演的形式(其实此题可用反演解),但我们可以利用欧拉函数来分析。

有了poj2480的基础,我们已经知道: ∑ i = 1 n g c d ( i , n ) = ∑ d ∣ n d φ ( n d ) \sum_{i=1}^{n}gcd(i,n)=\sum_{d|n}d\varphi(\frac{n}{d}) i=1ngcd(i,n)=dndφ(dn),则易得:

∑ i = 1 n ∑ j = 1 n g c d ( i , j ) = 2 ∑ i = 1 j ∑ j = 1 n g c d ( i , j ) − ∑ i = 1 n i = 2 ∑ i = 1 n ∑ d ∣ i d φ ( i d ) − ∑ i = 1 n i \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)=2\sum_{i=1}^{j}\sum_{j=1}^{n}gcd(i,j)-\sum_{i=1}^{n}i=2\sum_{i=1}^{n}\sum_{d|i}d\varphi(\frac{i}{d})-\sum_{i=1}^{n}i i=1nj=1ngcd(i,j)=2i=1jj=1ngcd(i,j)i=1ni=2i=1ndidφ(di)i=1ni

∑ i = 1 n ∑ d ∣ i d φ ( i d ) = ∑ d = 1 n ∑ i = 1 n φ ( i d ) = ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ φ ( i ) \sum_{i=1}^{n}\sum_{d|i}d\varphi(\frac{i}{d})=\sum_{d=1}^{n}\sum_{i=1}^{n}\varphi(\frac{i}{d})=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i) i=1ndidφ(di)=d=1ni=1nφ(di)=d=1ni=1dnφ(i)

(此步化简:考虑所有可能的 d d d的取值,进而考虑每种 d d d对答案的贡献)

所以, ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) = 2 ( ∑ d = 1 n ∑ i = 1 ⌊ n d ⌋ φ ( i ) ) − n ( n + 1 ) 2 \sum_{i=1}^{n}\sum_{j=1}^{n}gcd(i,j)=2(\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i))-\frac{n(n+1)}{2} i=1nj=1ngcd(i,j)=2(d=1ni=1dnφ(i))2n(n+1)

由于 ∑ i = 1 ⌊ n d ⌋ φ ( i ) \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\varphi(i) i=1dnφ(i)可前缀和预处理,故算法整体复杂度为 O ( n ) O(n) O(n)

Code

#include<cstdio>
#include<iostream>
#define ri register int
#define ll long long
using namespace std;

const int MAXN=1e5+20;
int N,prime[MAXN>>2],phi[MAXN],cnt;
ll ans,sum[MAXN];
bool isprime[MAXN];

void Phi()
{
	isprime[1]=true; phi[1]=1;
	for(ri i=2;i<=N;++i)
	{
		if(!isprime[i])
		{
			prime[++cnt]=i;
			phi[i]=i-1;	
		}
		for(ri j=1;j<=cnt&&i*prime[j]<=N;++j)
		{
			isprime[i*prime[j]]=true;
			if(i%prime[j]==0)	phi[i*prime[j]]=phi[i]*prime[j];
			else	phi[i*prime[j]]=phi[i]*phi[prime[j]];
			if(i%prime[j]==0)	break;
		}
	}
}

int main()
{
	scanf("%d",&N);
	Phi();
	for(ri i=1;i<=N;++i)	sum[i]=sum[i-1]+(ll)phi[i];
	for(ri d=1;d<=N;++d)	ans+=(ll)d*sum[N/d];
	ans=ans*2LL-(ll)N*(ll)(N+1)/2LL;
	cout<<ans;
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完善程序如下: ``` #include <stdio.h> int add(int a, int b);//求a+b long fact(int n);//求n! int gcd(int m, int n);//求两个整数的最大公约数 int max(int a, int b);//求两个整数的最大数 char toUpCase(char c);//小写字母变为大写字母 int Combination(int n, int m);//计算n!/(m!*(n-m)!) int main() { int a, b, c; int sum_ab, sum_abc; int ab = 0x10; printf("Please input three integers:"); scanf("%d%d%d", &a, &b, &c); add(a, b); sum_ab = add(a, b); sum_abc = add(sum_ab, c); printf("The sum is:%d\n", sum_abc); printf("%d!=%ld\n", a, fact(a));//fact(a)中的a为实际参数 printf("C(6,2)=%d\n", Combination(6, 2)); printf("UpCase of p=%c\n", toUpCase('p')); return 0; } char toUpCase(char c)//小写字母变为大写字母 { if (c >= 'a' && c <= 'z') { return c - 32; } return c; } int Combination(int n, int m)//计算n!/(m!*(n-m)!) { return(fact(n) / (fact(m)*fact(n - m))); } long fact(int n)//求n! { long s = 1; for (int i = 1; i <= n; i++) { s *= i; } return s; } int add(int a, int b)//求a+b { int s; s = a + b; return s; } int gcd(int m, int n)//求两个整数的最大公约数 { int c; while (m%n != 0) { c = m % n; m = n; n = c; } return n; } int max(int a, int b)//求两个整数的最大数 { if (a >= b) return a; return b; } ``` 其中,需要注意的点有: 1. 在 `toUpCase` 函数中,需要判断输入的字符是否为小写字母,只有小写字母才进行转换,否则直接返回原字符。 2. 在 `fact` 函数中,需要使用循环来计算阶乘。 3. 在 `add` 函数中,可以直接返回 `a+b` 的值,不需要使用中间变量。 4. 在 `gcd` 函数中,需要在循环中更新变量 `c` 的值,并在循环结束后返回 `n` 的值,因为最大公约数即为最后一次循环中 `n` 的值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值