bzoj 1717 [USACO06DEC] Milk Patterns (后缀数组+二分)

10 篇文章 0 订阅
5 篇文章 0 订阅

题目大意:求可重叠的相同子串数量至少是K的子串最长长度  

洛谷传送门

依然是后缀数组+二分,先用后缀数组处理出height

每次二分出一个长度x,然后去验证,在排序的后缀串集合里,有没有连续数量多于K个串的长度>=x,

但据说有一种高端做法是把二分换成单调队列,能减少常数,可惜我并没有看懂......

原题好像是哈希的骚操作,但网上的题解好像都是后缀数组......

比上一道男人八题简单多了,我原来的错代码竟然卡过去了70分......

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 20010
#define inf 0x3f3f3f3f
#define maxn 1000010
using namespace std;

int n,len,tot,K;
int a[N],tr[N],sa[N],rk[N],hs[N],h[N];
struct node{int id,val,w;}d[N];
int cmp1(node s1,node s2){return s1.val<s2.val;}
int cmp2(node s1,node s2){return s1.id<s2.id;}
int gint()
{
    int rett=0,fh=1;char c=getchar();
    while(c<'0'||c>'9'){if(c=='-')fh=-1;c=getchar();}
    while(c>='0'&&c<='9'){rett=(rett<<3)+(rett<<1)+c-'0';c=getchar();}
    return rett*fh;
}
bool check(int k,int x,int y){
    if(x+k>len||y+k>len) return 0;
    else return (rk[x]==rk[y]&&rk[x+k]==rk[y+k])?1:0;
}
void get_sa()
{
    int cnt=0,i;
    for(i=1;i<=len;i++) hs[a[i]]++;
    for(i=1;i<=tot;i++) if(hs[i]) tr[i]=++cnt;
    for(i=1;i<=tot;i++) hs[i]+=hs[i-1];
    for(i=1;i<=len;i++) rk[i]=tr[a[i]],sa[hs[a[i]]--]=i;
    for(int k=1;cnt<len;k<<=1)
    {
        for(i=1;i<=cnt;i++) hs[i]=0;
        for(i=1;i<=len;i++) hs[rk[i]]++;
        for(i=1;i<=cnt;i++) hs[i]+=hs[i-1];
        for(i=len;i>=1;i--) if(sa[i]>k) tr[sa[i]-k]=hs[rk[sa[i]-k]]--;
        for(i=1;i<=k;i++) tr[len-i+1]=hs[rk[len-i+1]]--;
        for(i=1;i<=len;i++) sa[tr[i]]=i;
        for(i=1,cnt=0;i<=len;i++) tr[sa[i]]=check(k,sa[i],sa[i-1])?cnt:++cnt;
        for(i=1;i<=len;i++) rk[i]=tr[i];
    }
}
void get_height()
{ 
    for(int i=1;i<=n;i++){
        if(rk[i]==1) continue;
        for(int j=max(1,h[rk[i-1]]-1);;j++)
            if(a[i+j-1]==a[sa[rk[i]-1]+j-1]) h[rk[i]]=j;
            else break;
    }
}
void descrete()
{
    sort(d+1,d+n+1,cmp1);
    d[0].val=-1;
    for(int i=1;i<=n;i++)
        if(d[i].val==d[i-1].val)
            d[i].w=d[i-1].w;
        else d[i].w=++tot;
    sort(d+1,d+n+1,cmp2);
    for(int i=1;i<=n;i++)
        a[i]=d[i].w;
}
int check(int ans)
{
    int i,cnt=0;
    for(i=1;i<=n;)
    {
        if(h[i]<ans) {i++;continue;}
        for(cnt=0;h[i]>=ans&&i<=n;i++) 
            cnt++;
        if(cnt>=K-1) return 1;
    }return 0;
}

int main()
{
    scanf("%d%d",&n,&K);len=n;
    for(int i=1;i<=n;i++) 
        d[i].val=gint(),d[i].id=i;
    descrete();
    get_sa();
    get_height();
    int l=0,r=n,ans=0;
    while(l<=r){
        int mid=(l+r)>>1;
        if(check(mid)) ans=mid,l=mid+1;
        else r=mid-1;
    }printf("%d\n",ans);
    return 0;
}


 

题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值