目标检测
文章平均质量分 64
顾北轻声寒
温柔且勇敢
展开
-
yolov5+deepsort跑通了,视频画面却没有结果
之前的代码还可以,但是换了个电脑之后,重新从github上下载代码,结果运行出来之后,视频没有结果,测试yolov5_deepsort的时候出现的错误。于是找呀找呀。终于找到了问题。在detecor.py文件中,加入 cudnn.benchmark = True 就可以了 if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image原创 2021-09-09 19:53:18 · 4913 阅读 · 25 评论 -
Goole colab使用
Google colab应该是非常不错的选择,长期免费,褥资本主义羊毛,我们绝不手软2333,下面是一个非常简单的三步上手使用教程。1.配置它的配置大概是15g硬盘(Google drive的云空间)当然各种库文件是不算在内的,你可以把它理解成一个数据存储空间,内存大概是12gb左右,gpu目前有4种,p100,T4,P4,K80,内置tensorflow以及pytorch的完整库文件,如果想用其他深度学习库,一个pip就可以搞定,基本可以满足大部分项目或者比赛的使用体验。对于colab使用其实只需三原创 2021-07-12 13:48:14 · 366 阅读 · 0 评论 -
目标检测综述
1.目前学术和工业界出现的目标检测算法分成3类:(1)传统的目标检测算法:Cascade + HOG/DPM[4] + Haar/SVM[5]以及上述方法的诸多改进、优化,这种检测器主要是利用图像中的边框特征(Haar特征)进行目标检测,通过多个弱分类器以级联加权的方式组合起来,最终形成一个强大的强分类器;(2)候选区域/框 + 深度学习分类:通过提取候选区域,并对相应区域进行以深度学习方法为主的分类的方案,如:R-CNN(Selective Search + CNN + SVM)[6]SPP-net(原创 2021-05-11 19:00:24 · 2208 阅读 · 0 评论