TrackEval使用教程
可以看这个博主写的,很详细https://zhuanlan.zhihu.com/p/391396206
制作自己的MOT数据集
软件推荐
这里我推荐使用Darklabel,如果进不去的话,我上传到百度云,供大家下载使用。链接:
链接:https://pan.baidu.com/s/1K7vWRWr6jzi6xFSfAxwhVA
提取码:phu
1.打开yaml文件,将自己要跟踪的类别写进去,这里我的类别是下面这几类
my_classes: ["uav", "car", "person"]
2.相关讲解,不过现在版本快捷键是shift+鼠标操作了。
制作好相关数据集之后,跟踪完成保存结果。使用TrackEval进行评估。
我们的数据集的格式如下:
1,1,592,444,482,284,1,-1,-1,-1
命名为gt.txt
文件路径
#gt信息
#如果多个的话,并列存放
data/
gt/
mot_challenge/
MyDataset/
seq-01/ # 视频名
gt/
gt.txt # <---- ground truth
seqinfo.ini # 放你的视频的信息
trackers/ # 你自己代码运行出来的结果
mot_challenge/
MyDataset/
data/
seq-01.txt # <---- model result 视频结果.txt
seqinfo.ini的信息
[Sequence]
name=ai_city
imDir=img1
frameRate=30
seqLength=1996
imWidth=1920
imHeight=1080
imExt=.jpg
运行
运行 scripts/run_mot_challenge.py
-GT_FOLDER # gt路径
--BENCHMARK ai_city # 视频名
--DO_PREPROC False
--METRICS HOTA # 选择测评指标 'HOTA', 'CLEAR', 'Identity'
这里附上我自己跑出来的结果,因为我用的两个都是gt.txt
CLEAR: data-pedestrian MOTA MOTP MODA CLR_Re CLR_Pr MTR PTR MLR sMOTA CLR_TP CLR_FN CLR_FP IDSW MT PT ML Frag
more_2_0 100 100 100 100 100 100 0 0 100 1056 0 0 0 4 0 0 0
more_2_1 100 100 100 100 100 100 0 0 100 1065 0 0 0 5 0 0 0
more_2_2 100 100 100 100 100 100 0 0 100 476 0 0 0 2 0 0 0
more_2_3 100 100 100 100 100 100 0 0 100 971 0 0 0 4 0 0 0
COMBINED 100 100 100 100 100 100 0 0 100 3568 0 0 0 15 0 0 0
Count: data-pedestrian Dets GT_Dets IDs GT_IDs
more_2_0 1056 1056 4 4
more_2_1 1065 1065 5 5
more_2_2 476 476 2 2
more_2_3 971 971 4 4
COMBINED 3568 3568 15 15
后续发现的bug
重新在测评的时候,出现了下面这个问题,评论区也有人遇到了,看问题的报错是因为类别不对,因此,需要修改gt文件中的类别,我们在使用Darklabel标注结束后,gt文件的格式是:
1,1,592,444,482,284,-1,-1,-1,-1
我们需要将其修改为
1,1,592,444,482,284,-1,1,-1,-1
最后我的测试通过。
trackeval.utils.TrackEvalException: Attempting to evaluate using invalid gt classes. This warning only triggers if preprocessing is performed, e.g. not for MOT15 or where prepropressing is explicitly disabled. Please either check your gt data, or disable preprocessing. The following invalid classes were found in timestep 1: -1