-
目前大多数的分布式架构底层通信都是通过RPC实现的,RPC框架非常多,比如前我们学过的Hadoop项目的RPC通信框架,但是Hadoop在设计之初就是为了运行长达数小时的批量而设计的,在某些极端的情况下,任务提交的延迟很高,所有Hadoop的RPC显得有些笨重,Spark 的RPC是通过Akka类库实现的,Akka用Scala语言开发,基于Actor并发模型实现,Akka具有高可靠、高性能、可扩展等特点,使用Akka可以轻松实现分布式RPC功能。
-
Akka基于Actor模型,提供了一个用于构建可扩展的(Scalable)、弹性的(Resilient)、快速响应的(Responsive)应用程序的平台。
Actor模型:在计算机科学领域,Actor模型是一个并行计算(Concurrent Computation)模型,它把actor作为并行计算的基本元素来对待:为响应一个接收到的消息,一个actor能够自己做出一些决策,如创建更多的actor,或发送更多的消息,或者确定如何去响应接收到的下一个消息。
Actor是Akka中最核心的概念,它是一个封装了状态和行为的对象,Actor之间可以通过交换消息的方式进行通信,每个Actor都有自己的收件箱(Mailbox)。通过Actor能够简化锁及线程管理,可以非常容易地开发出正确地并发程序和并行系统,Actor具有如下特性:
1.提供了一种高级抽象,能够简化在并发(Concurrency)/并行(Parallelism)应用场景下的编程开发
2.提供了异步非阻塞的、高性能的事件驱动编程模型
3.超级轻量级事件处理(每GB堆内存几百万Actor)
-
架构图
- 重要类
4.1ActorSystem
在Akka中,ActorSystem是一个重量级的结构,他需要分配多个线程,所以在实际应用中,ActorSystem通常是一个单例 对象,我们可以使用这个ActorSystem创建很多Actor。
4.2Actor
在Akka中,Actor负责通信,在Actor中有一些重要的生命周期方法。
preStart()方法:该方法在Actor对象构造方法执行后执行,整个Actor生命周期中仅执行一次。
receive()方法:该方法在Actor的preStart方法执行完成后执行,用于接收消息,会被反复执行。
4.3 Master
package cn.maize.akka
import akka.actor.{Actor, ActorSystem, Props}
import com.typesafe.config.ConfigFactory
import scala.collection.mutable
import scala.concurrent.duration._
class Master(val host:String,val port:Int) extends Actor{
//保存WorkerID 到 WorkerInfo的映射
val idToWorkers = new mutable.HashMap[String,WorkerInfo]()
//保存所的WorkerInfo信息
val workers = new mutable.HashS