一个无理分式不等式的新证明

       近日,本人拜读了2018年数学通报第5期《一个无理分式不等式的三个推广》,想到了一种更自然的原题推广方法和新的猜想证法,现和大家分享如下:

原题:\large \tfrac{1}{\sqrt[]{\lambda x + x^{2}}} + \tfrac{1}{\sqrt[]{\lambda y + y^{2}}}\geqslant \tfrac{2}{\sqrt[]{\lambda + 1}},x,y> 0,xy=1,\lambda \geq 0

先介绍原文中发现的定理:

以下定理中规定\large x,y> 0,xy=1;n,m\in \mathbb{N},n,m\geq 2;x_{i}> 0,\prod_{i=1}^{n}x_{i}=1,有:

定理一:\LARGE \tfrac{n}{\sqrt[]{\lambda x + x^{2}}} + \tfrac{1}{\sqrt[]{\lambda y^{n} + y^{2n}}}\geqslant \tfrac{n+1}{\sqrt[]{\lambda + 1}}

定理二:\LARGE \sum_{i=1}^{n}\frac{1}{\sqrt[]{\lambda x_{i} + x_{i}^{2}}} \geqslant \frac{n}{\sqrt[]{\lambda + 1}}

定理三:\LARGE \tfrac{x}{\sqrt[m]{\lambda x + 1}} + \tfrac{y}{\sqrt[m]{\lambda y + 1}}\geqslant \tfrac{2}{\sqrt[m]{\lambda + 1}}

以及猜想:\LARGE \sum_{i=1}^{n}\tfrac{x_{i}}{\sqrt[m]{\lambda x_{i} + 1}} \geqslant \tfrac{n}{\sqrt[m]{\lambda + 1}}

原文中定理的证明不再赘述࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值