手把手教你在Detectron2中搭建自己的Backbone 准备一个Bockbone,我们以最新的RepVGG为例:查看:yaml文件:OUT_FEATURES: [“res2”, “res3”, “res4”, “res5”]修改主干网络,返回一个字典。
LeetCode494 目标和 x-(sum-x) =target,也就可以退出x=(sum+target)/2。思路:看似是回溯遍历问题,其实是0-1背包问题,使用动态规划解决最好。加法总和x,那么减法总和为sum-x。
Channel Shuffle类 ShuffleNet 中引入了 channel shuffle, 用来进行不同分组的特征之间的信息流动, 以提高性能。而Detectron2使用的pytorch版本一般较低,没有channel shuffle这个类,因此编写这个轮子用于通道洗牌。实现了与1.11.0官方库相同的结果。官方文档:ChannelShuffle — PyTorch 1.11.0 documentation...
Cookie和Session Cookie and Session会话会话:用户打开一个浏览器,点击了很多超链接,访问多个Web资源,关闭浏览器,这个过程称之为会话。有状态会话:一个服务端证明客户端来过?服务端给客户端一个信件,客户端下次访问服务端时带上信件就可以了;cookie服务器登记你来过了,下次你来的时候我来匹配你。session保存会话的两种技术cookie客户端技术(相应,请求)session服务器技术,利用这个技术,可以保存用户的会话信息。我们把信息和数据放在Session中。常见
创建Servlet项目 1.通过模板创建2.配置Maven环境3. 补齐必要的包4.将web.xml修改成最新版<?xml version="1.0" encoding="UTF-8"?><web-app xmlns="http://xmlns.jcp.org/xml/ns/javaee"xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/jav
Batch Normalization小结 Batch Normalization一种数据归一化的方法,用在激活层之前,能加速模型收敛,并使得模型训练过程更加稳定,能避免梯度爆炸或者梯度消失。平替Dropout。计算过程计算Batch的方差和均值将均值和方差变换到0~1之间最后将得到的每一个元素乘以γ加上β,输出结果,其中γ和β是可训练的参数(一定程度上保留原数据的分布)。训练和测试中的一些注意事项训练时,均值和方差分别时该批次内数据相应维度的均值与方差;训练是非线性的,加入了被β和γ。测试推理时,均值和方差时基于所有训练时ba
DCT-Mask(CVPR2021)核心代码解析 代码主要由两个重要组成部分,分别为dct_mask_head.py和mask_encoding.pydct_mask_head.py# dec_mask_head.py"""类:MaskRCNNDCTHaed方法:__init__():初始化方法from_config():从配置文件中获取一些基本的配置信息layers():构建DCT-Mask的卷积层forward(): 训练和测试内容mask_rcnn_dct_loss():dct损失mask_rcnn_dct_inference(