- 博客(8)
- 收藏
- 关注
原创 mmsegmentation进阶使用学习笔记(三)——配置运行设定
dynamic_intervals: Optional[List[Tuple[int, int]]] = None) -> None: # 个可选的里程碑列表,每个里程碑(元组)包含一个轮次和一个间隔,用于在达到该轮次后更改验证频率。循环控制器指的是训练, 验证和测试时的执行流程, 在配置文件里面使用 train_cfg, val_cfg 和 test_cfg 来构建这些流程。max_epochs: int, # 训练的总轮次数。在使用时,就需要更改训练设置的配置,不同的类需要传入的参数不同。
2024-10-31 15:33:56
1142
原创 mmsegmentation进阶使用学习笔记(二)——添加自定义模块
具体模型配置文件:configs/gleformer/gleformer_mit-b5_1xb4-20k_voc12aug-512x512.py。开发新的分割器需要重写与 loss、predict 和 tensor 相对应的 loss、predict 和 _forward 方法。所有组件,包括主干网络(backbone)、头、损失函数、数据预处理器、分割器(segmentor)等都可以自定义。基础数据配置文件:configs/_base_/datasets/voc_road.py。
2024-10-31 15:25:43
841
原创 mmsegmentation进阶使用学习笔记(一)——添加自定义数据集
该配置文件中包含了数据集类型和根目录、数据增强和处理流水线、数据加载器(train_dataloader、val_dataloader、test_dataloader)、评估器(val_evaluator 和 test_evaluator)super().__init__(...)中调用基类的初始化方法,传递必要的参数。这里只需要在voc.py中把第二个类别名称改为道路类别,把对应颜色改为白色,不需要管其他类别,因为在道路提取时只分为两个类。还需要在同目录的_init_.py文件中补充导入。
2024-10-15 11:06:48
1016
原创 mmsegmentation基础使用学习笔记(四)——常用工具&可视化
例如,在 _base_/schedules/schedule_20k.py 中,修改 SegVisualizationHook 配置,将 draw 设置为 True 以启用网络推理结果的存储,interval 表示预测结果的采样间隔, 设置为 1 时,将保存网络的每个推理结果。`SegDataSample` 是在 MMSegmentation 中定义的不同组件之间的数据结构接口,预测结果会被保存在 $WORK_DIRS/vis_data 下的 vis_image 中。类别的名称和表示颜色是一一对应的。
2024-10-13 18:30:50
1469
原创 mmsegmentation基础使用学习笔记(三)——使用现有模型在单GPU上进行训练和测试&代码解析
当使用PyTorch版本>=2.0.0时,“torch.distributed.launch”将把“--local rank”参数传递给“tools/train.py”,而不是“--local_rank”。# 当使用PyTorch版本>=2.0.0时,“torch.distributed.launch”将把“--local rank”参数传递给“tools/train.py”,而不是“--local_rank”。# 根据配置文件构建runner,继承OpenMMLab框架中的训练逻辑。
2024-10-07 20:56:53
1055
原创 mmsegmentation基础使用学习笔记(二)——准备数据集&使用预训练模型推理
mmseg支持20+不同的数据集,下载好数据集后需要按规定的格式放进data路径下。我需要使用自己的数据集,并不会用到官方数据集,所以使用自己数据集的部分会写到进阶的笔记中。
2024-10-07 18:09:59
1137
原创 mmsegmentation基础使用学习笔记(一)——配置文件
,然后修改配置文件中的字段。数据处理流程中会包含图像的加载、标签的加载、数据增广(调整大小resize、随机剪裁crop、翻转flip、光学处理、打包)。数据加载器的配置包含每个gpu的batch_size、每个gpu的进程个数、对应的数据集配置(类型、路径、前缀、处理流程)。在dict()的内容中设置_delete_=True并加入新的键值,那么就会用新的字段去替换继承的文件中旧的键值。model = dict() # 模型的配置,包括了模型会使用到的骨干网络、解码头、辅助头、训练和测试设置。
2024-09-28 20:21:56
967
原创 Linux系统 mmsegmentation环境配置
由于mmseg做过较大的版本改动,直接按照官网的教程可能出现版本不适配的问题~这篇就是记录我自己在官网教程的基础上,改变每一步的具体版本,以防出现版本不适配的问题。首先要明确,CUDA版本、pytorch版本和numpy版本不同都有可能与mmcv版本不适配,导致环境配置出现冲突,所以都需要注意。我的版本信息:CUDA11.3、pytorch1.12.0、python3.9、numpy1.23我租用的服务器信息:即使你目前的版本和我的不同,也可以参考我的步骤。
2024-09-27 18:58:29
1172
4
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人