Linux系统 mmsegmentation环境配置

由于mmseg做过较大的版本改动,直接按照官网的教程可能出现版本不适配的问题~

这篇就是记录我自己在官网教程的基础上,改变每一步的具体版本,以防出现版本不适配的问题。

mmseg官方教程:开始:安装和运行 MMSeg — MMSegmentation 1.2.2 文档

首先要明确,CUDA版本、pytorch版本和numpy版本不同都有可能与mmcv版本不适配,导致环境配置出现冲突,所以都需要注意。

我的版本信息:CUDA11.3、pytorch1.12.0、python3.9、numpy1.23

我租用的服务器信息:

即使你目前的版本和我的不同,也可以参考我的步骤。在每个步骤中我会先给出需要用到的命令,再给出需要注意的地方,在每一步的最后都会把用到的参考网站附上~

step1:创建虚拟环境

conda create --name openmmlab python=3.9 -y
conda activate openmmlab

step2:安装pytorch

conda install pytorch&#

### 关于在 CUDA 12.3 环境下安装 mmsegmentation 的指南 为了确保能够在 CUDA 12.3 下成功安装并配置 mmsegmentation,需遵循一系列特定的操作流程。这不仅涉及到了解如何设置 Python 和 PyTorch 版本兼容性的问题,还涉及到具体组件的安装。 #### 设置环境准备 考虑到不同版本间的依赖关系,在开始之前确认已正确设置了 CUDA 12.3 及其对应的 cuDNN 库[^2]。对于 Windows 用户来说,还需要提前准备好 Microsoft Visual Studio (VS),因为编译过程中可能需要用到 C++ 编译器支持。 #### 安装 Python 和 PyTorch 建议使用 Anaconda 或 Miniconda 来管理虚拟环境以及包依赖项。创建一个新的 conda 虚拟环境中,并激活该环境: ```bash conda create -n openmmlab python=3.9 -y conda activate openmmlab ``` 接着安装与 CUDA 12.3 兼容的 PyTorch 版本。可以访问 [PyTorch官网](https://pytorch.org/get-started/locally/) 获取最新的安装指令。通常情况下,命令类似于下面这样(请注意根据实际需求调整参数): ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu123 ``` #### 安装 OpenMMLab 组件 完成上述准备工作之后,就可以按照官方文档中的指导来安装必要的 OpenMMLab 工具链了。首先是更新 `openmim` 并安装基础库 `mmengine` 和 `mmcv`: ```bash pip install -U openmim mim install mmengine mim install "mmcv>=2.0.0" ``` 最后一步就是安装目标工具——`mmsegmentation` 自身: ```bash mim install mmseg ``` 通过以上步骤,理论上可以在 CUDA 12.3 上顺利完成 mmsegmentation 的部署工作。不过需要注意的是,由于软件不断迭代更新,某些细节可能会有所变化;因此遇到问题时查阅最新版次的手册总是明智的选择。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

还会长的桔子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值