[LeetCode] 561.Array Partition I 备忘

本文探讨了一种数组配对求和的问题,并给出了两种解决方案。一种是通过排序数组后依次选取最小元素进行配对求和;另一种是利用类似桶排序的方法,通过计数并遍历的方式实现更高效的求和。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), ..., (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

Example 1:

Input: [1,4,3,2]

Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).

Note:

  1. n is a positive integer, which is in the range of [1, 10000].
  2. All the integers in the array will be in the range of [-10000, 10000]. 

数组分离。在一个偶数长度的数组中,每2个数字组成一组,计算每一组中的最小值的和的最大值。

第一眼看见时,就想到数组排序,然后两两组队,就行了。
class Solution {
public:
    int arrayPairSum(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        
        int sum = 0;
        for (unsigned int i = 0; i < nums.size(); i += 2)
        {
            sum += nums[i];
        }
        
        return sum;
    }
};

虽然成功了但是耗时86ms,去评论区看了下,发现一个巧妙的方法,跟桶排序非常相似。由于题目已经确定所有数字的值在-10000到10000之间,于是定义一个维度为20001的int数组,数组下标索引就想到于该题中输入数组nums中每个数字,即作为键,类似于map,该数组中每个值用来统计题中输入数组中的每个数字出现的次数,只不过下标的值多加了10000,就自动将所有数字排序了,然后每隔一个数字取一次与总值累加即可,耗时62ms。
class Solution {
public:
    int arrayPairSum(vector<int>& nums) {
        std::vector<int> temp(20001, 0);
        
        for (unsigned int i = 0; i < nums.size(); ++i)
        {
            temp[nums[i] + 10000]++;
        }
        
        int sum = 0;
        int flag = 0;
        
        for (unsigned int i = 0; i < temp.size(); )
        {
            if (temp[i])
            {
                if (flag == 0)
                {
                    sum += (i - 10000);
                    flag = 1;
                }
                else
                {
                    flag = 0;
                }
                --temp[i];
            }
            else
            {
                ++i;
            }
        }
        
        return sum;
    }
};



内容概要:本文详细介绍了利用粒子群优化(PSO)算法解决配电网中分布式光伏系统的选址与定容问题的方法。首先阐述了问题背景,即在复杂的配电网环境中选择合适的光伏安装位置和确定合理的装机容量,以降低网损、减小电压偏差并提高光伏消纳效率。接着展示了具体的PSO算法实现流程,包括粒子初始化、适应度函数构建、粒子位置更新规则以及越界处理机制等关键技术细节。文中还讨论了目标函数的设计思路,将多个相互制约的目标如网损、电压偏差和光伏消纳通过加权方式整合为单一评价标准。此外,作者分享了一些实践经验,例如采用前推回代法进行快速潮流计算,针对特定应用场景调整权重系数,以及引入随机波动模型模拟光伏出力特性。最终实验结果显示,经过优化后的方案能够显著提升系统的整体性能。 适用人群:从事电力系统规划与设计的专业人士,尤其是那些需要处理分布式能源集成问题的研究人员和技术人员。 使用场景及目标:适用于希望深入了解如何运用智能优化算法解决实际工程难题的人士;旨在帮助读者掌握PSO算法的具体应用方法,从而更好地应对配电网中分布式光伏系统的选址定容挑战。 其他说明:文中提供了完整的Matlab源代码片段,便于读者理解和复现研究结果;同时也提到了一些潜在改进方向,鼓励进一步探索和创新。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值