深度学习
中国的Griffin
以学习为主
展开
-
ResNet(残差网络)
作者:小熊QQ来源:CSDN原文:https://blog.csdn.net/qq_29893385/article/details/81207203非常非常深的神经网络是很难训练的,因为存在梯度消失和梯度爆炸问题。ResNets是由残差块(Residual block) 构建的,首先解释一下什么是残差块。 这是一个两层神经网络,在lll 层进行激活,得到a[l+1]a^{[l+1]...转载 2018-11-01 04:21:02 · 1653 阅读 · 0 评论 -
激活函数
作者:小熊QQ来源:CSDN原文:https://blog.csdn.net/qq_29893385/article/details/81214281激活函数是为了给神经元引入非线性因素,使得神经网络可以逼近任意非线性函数,这样神经网络就可以应用于众多的非线性模型中。常见的几个激活函数有sigmod,Tanh,ReLU,softmax1、sigmod函数(logistic 函数)下图为...转载 2018-11-01 04:43:21 · 287 阅读 · 0 评论 -
Pseudo-3D Residual Networks算法的pytorch代码
作者:AI之路原文:https://blog.csdn.net/u014380165/article/details/78986430本篇博客是对第三方实现的Pseudo-3D Residual Networks算法的pytorch代码进行介绍,介绍顺序为代码调试顺序,建议先阅读论文或相关博客。论文:Learning Spatio-Temporal Representation with ...转载 2018-11-12 22:10:16 · 735 阅读 · 0 评论 -
基于3D卷积神经网络的人体行为理解(论文笔记)
基于3D卷积神经网络的人体行为理解(论文笔记)一、概述二、3D卷积神经网络1、3D卷积2、3D CNN架构3、模型规则化Model Regularization4、模型组合5、模型的实现三、参考文献原文链接:https://www.cnblogs.com/zhangyang520/p/7494128.html最近看Deep Learning的论文,看到这篇论文:3D Convolutional...转载 2019-01-23 11:38:35 · 635 阅读 · 0 评论 -
数据增强 总结
原文链接:http://www.cnblogs.com/gongxijun/p/6117588.html在图像的深度学习中,有的时候训练集不够多,或者某一类数据较少,或者为了防止过拟合,让模型更加鲁棒性,为了丰富图像训练集,更好的提取图像特征,泛化模型(防止模型过拟合),一般都会对数据图像进行数据增强,数据增强,常用的方式,就是旋转图像,剪切图像,改变图像色差,扭曲图像特征,改变图像尺寸大小,...转载 2019-02-18 16:04:13 · 1285 阅读 · 0 评论