问题描述:
给定 n 个正整数 a1,a2,...,an,其中每个点的坐标用(i, ai)表示。 画 n 条直线,使得线 i 的两个端点处于(i,ai)和(i,0)处。请找出其中的两条直线,使得他们与 X 轴形成的容器能够装最多的水。
1.首先想到的是暴力求解复杂度为o(n^2)代码补贴出来了。
2.根据实际情况,决定盛水多少的是短板,所以可以进行分析,先把两块板置于两端,如果从板子高度较大端向内移动,则无论如何盛水量都是减少,所以只能移动高度较少的板子,所以可以得到o(n)的解。代码如下:
int maxArea(vector<int>& height) {
int max = 0,low = 0, high = height.size() - 1,temp = 0;
while(low < high){
temp = height[low] < height[high]?height[low++] : height[high--];
temp *= (high - low + 1);
max = temp > max?temp : max;
}
return max;
}