利用EXCEL进行水稻二化螟孵化高峰期的预测预报

1. 试验内容
为做好水稻二化螟病虫害的预测预报工作,江苏武进植保站从1956年到1961年连续6年记录每年2月下旬至3月下旬旬平均气温累加值(x,旬.℃),以及二化螟越冬幼虫4月份化蛹高峰期(Y,以4月1日为0),得到12对数据(表5-1)。现已知1962年2月下旬至3月下旬的旬平均气温为40℃,请预测二化螟在什么时候达到孵化高峰。

 

2. 试验目的
(1)寻找水稻二化螟化蛹高峰期与旬平均气温之间的关系,计算出温度与孵化高峰期之间的一元直线回归方程。
(2)利用此方程对二化螟的发生情况进行预测预报。如1962年旬平均气温为40℃,请预测二化螟蛾盛发期时间。


3. 结果分析
3.1 建立Excel文件
打开Excel软件,创建新的数据文件,数据输入样式如下图所示。

 

3.2 作散点图,明确两个变量间的关系

 

散点图得到的结果:由图5-1可知,水稻二化螟化蛹孵化高峰期与气温存在着直线关系,是一种负相关关系,即气温升高,孵化时间变短。因此,下一步分析是求出二化螟化蛹孵化高峰期与气温之间的直线方程,寻找之间的数量关系。

 

3.3 计算直线回归方程

问题1: 什么是回归直线?
在x,y的直角坐标平面上可以作出无数条直线,而回归直线是指所有直线中最接近散点图中全部散点的直线。
设样本直线回归方程为:


其中,a是α的估计值,b是β的估计值。α、β分别是总体直线回归方程的回归截距和回归系数。

 

问题2:回归直线如何计算出来?如何利用Excel来绘制?

方法有3种。第一种方法有助于了解回归直线方程的原理,第二种方法用于只需要计算出方程的情况,第三种方法可在作散点图的基础上,在图上直接绘制出直线,并将方程公式显示在图上。建议学习者掌握第三种。

(1)方法一 直接利用公式计算
回归直线在平面坐标系中的位置取决于a、b的取值,为了使能最好地反应y和x两变量间的数量关系,根据最小二乘法,a、b应使回归估计值与观测值的偏差平方和最小,即:

本案例计算结果为:
a=96.4775, b= -2.2747
将a、b值代入公式5-1即得一元回归直线方程为: y= -2.2747 x + 96.4775。

 

(2)方法二 利用Excel中的统计函数计算
分别利用截距函数“INTERCEPT(因变量Y值所在单元格区域 , 自变量X值所在单元格区域)”计算截距a值;利用斜率函数“SLOPE(因变量Y值所在单元格区域 , 自变量X值所在单元格区域)”计算回归系数b值。
在Excel工作表的单元格中输入“=INTERCEPT(C3:C8,B3:B8)”……(不含双引号)
在Excel工作表的单元格中输入“=SLOPE(C3:C8,B3:B8)”……(不含双引号)
按回车键后,分别的得到 a=96.4775, b= -2.2747
则一元回归直线方程为: y= -2.2747 x + 96.4775

 

(3)方法三 利用Excel统计图直接显示公式、决定系数,绘制回归直线。

 

3.4 回归关系测验
按照以上计算和Excel操作,只要有两组数据,不管两个变量之间是否存在因果关系,或者这种关系是否紧密,都可以计算出一个一元直线方程,并绘制出一条直线。因此,需要对此方程进行显著性测验即对两个变量之间是否存在显著的因果关系进行分析。
(1)测验方法
测验方法有3种:方差分析法、t测验法(对回归系数测验)、相关系数(r)测验法。

 

(2)回归方程假设测验的Excel操作步骤
用Excel中回归分析功能模块对回归关系进行分析,该模块提供了方差分析和t测验两种方法的数据分析结果。

具体操作如下:

 

 

4. 结论
根据以上统计分析,旬平均气温累加值(X,旬.℃)和二化螟蛾盛发期(Y)之间确实存在紧密的因果关系,可用一元回归方程y = -2.2747 x + 96.4775描述,即温度每提高1℃,孵化盛期平均提前2.2天。


5. 预测预报
可用已知的x值代入方程预测 y 值。1962年气温为40℃,即X=40,代入下列方程得:
y = -2.2747 x 40+ 96.4775=5.5(天)
因4月1日记为0天,水稻二化螟的孵化盛期约在4月5日到4月6日之间

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值