一元线性回归2

本文介绍了如何利用Python的Scikit-Learn库建立一元线性回归模型,包括绘制散点图、模型构建、预测和模型可视化,特别强调了最小二乘法在模型中的应用。
摘要由CSDN通过智能技术生成

通过Python的Scikit-Learn库可以轻松搭建一元线性回归模型。

#1.绘制散点图:

import matplotlib.pyplot as plt
x=[[1],[2],[4],[5]]
y=[2,4,6,8]
plt.scatter(x,y)
plt.show()

 

#2.引入Scikit-Learn库搭建模型

from sklearn.linear_model import LinearRegression
regr=LinearRegression()
regr.fit(x,y)

#3.模型预测


#模型预测,假设自变量为1.5

y_pre=regr.predict([[1.5]])

y_pre
Out[69]: array([2.9])

#同时预测多个变量

y_pre2=regr.predict([[1.5],[2.5],[4.5]])

y_pre2
Out[72]: array([2.9, 4.3, 7.1])

#4.模型可视化

还可以将搭建好的模型以可视化的形式展示出来,代码如下。

plt.scatter(x,y)
plt.plot(x,regr.predict(x))
plt.show()

绘制效果如下图所示,此时的一元线性回归模型就是中间形成的一条直线,其原理就是最小二乘法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值