- 博客(166)
- 收藏
- 关注
转载 PaddleOCR常见问题汇总(持续更新)
https://www.bookstack.cn/read/PaddleOCR/FAQ.md#4rqxz2【精选】OCR精选10个问题Q1.1.1:基于深度学习的文字检测方法有哪几种?各有什么优缺点?A:常用的基于深度学习的文字检测方法一般可以分为基于回归的、基于分割的两大类,当然还有一些将两者进行结合的方法。(1)基于回归的方法分为box回归和像素值回归。a. 采用box回归的方法主要有CTPN、Textbox系列和EAST,这类算法对规则形状文本检测效果较好,但无法准确检测不规则形状文本。 b.
2020-12-24 14:29:39
401
原创 TFLite推理CRNN网络模型,0-9数字识别
写在前面:经过几天的折腾,终于通关了TFLite本地编译,tensorflow模型转TFLite,TFlite推理CRNN网络模型。现在把整个过程记录下来。环境:操作系统:ubuntu18.04.5tensorflow版本:v2.2.0bazel版本:3.1.01.TFLite本地编译TFLite本地编译可以参考我的前面一篇博客《ubuntu18.04 tensorflow以及tensorflow lite源码编译C++库》,地址:https://blog.csdn.net/guo1988kui
2020-12-03 16:56:13
91
1
原创 解决anaconda下载的中断、慢的问题
1.更换conda国内源,比如清华源、科大源windows下更换源:进入C:\Users\用户名,找到.condarc,更改为channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/
2020-12-02 11:33:31
479
转载 Cross Entropy Error Function(交叉熵损失函数)
Cross Entropy Error Function(交叉熵损失函数)例子表达式函数性质学习过程优缺点这篇文章中,讨论的Cross Entropy损失函数常用于分类问题中,但是为什么它会在分类问题中这么有效呢?我们先从一个简单的分类例子来入手。1. 预测政治倾向例子我们希望根据一个人的年龄、性别、年收入等相互独立的特征,来预测一个人的政治倾向,有三种可预测结果:民主党、共和党、其他党。假设我们当前有两个逻辑回归模型(参数不同),这两个模型都是通过sigmoid的方式得到对于每个预测结果的概率值:模型1:
2020-06-12 19:37:34
285
原创 ubuntu利用conda创建虚拟环境,并安装cuda,cudnn,tensorflow
1.创建虚拟环境:conda create -n your_env_name python=3.6,若不写依赖项python的版本号,则默认安装最新的python包conda安装仓库conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkg
2020-06-02 14:03:02
827
2
原创 TensorFlow Slim的使用
1)准备数据集,修改download_and_convert_flowers.py将数据集转化成tfrecord格式第43行 _NUM_VALIDATION = 300 #修改为验证集的图片数量第49行 _NUM_SHARDS = 4 #修改为要生成的TFRECORD的数量第84行 把flower_photo修改为数据所存放的文件夹名称wk_data第102行 修改output_file...
2020-03-16 21:18:42
73
转载 Git使用教程:最详细、最傻瓜、最浅显、真正手把手教!
转载地址导读:因为教程详细,所以行文有些长,新手边看边操作效果出乎你的预料。GitHub虽然有些许改版,但并无大碍。一、Git是什么?Git是目前世界上最先进的分布式版本控制系统。工作原理 / 流程:Workspace:工作区Index / Stage:暂存区Repository:仓库区(或本地仓库)Remote:远程仓库二、SVN与Git的最主要的区别?SVN是集中式版本控制系统,版...
2020-02-20 16:37:49
119
转载 双目立体视觉概述
导读 为什么非得用双目相机才能得到深度? 双目立体视觉深度相机的工作流程 双目立体视觉深度相机详细工作原理 理想双目相机成像模型 极线约束 图像矫正技术 基于滑动窗口的图像匹配 基于能量优化的图像匹配 双目立体视觉深度相机的优缺点 ---------------------------------------------...
2020-02-12 18:25:46
564
转载 AMD64和i386的区别
下载Debian系统时,出现两个选项:ADM64和i386,那么这两者的区别是什么?i386=Intel 80386。其实i386通常被用来作为对Intel(英特尔)32位微处理器的统称。AMD64,又称“x86-64”或“x64”,是一种64位元的电脑处理器架构。它是建基于现有32位元的x86架构,由AMD公司所开发。下文引用自知乎:x86架构首度出现在1978年推出的Intel 808...
2020-01-22 11:17:08
404
转载 五中常见的软件架构
转载地址 一、分层架构分层架构(layered architecture)是最常见的软件架构,也是事实上的标准架构。如果你不知道要用什么架构,那就用它。这种架构将软件分成若干个水平层,每一层都有清晰的角色和分工,不需要知道其他层的细节。层与层之间通过接口通信。虽然没有明确约定,软件一定要分成多少层,但是四层的结构最常见。表现层(presentation):用户界面,负责视觉...
2020-01-21 17:17:25
101
原创 Android ADB 常用命令
转载:https://www.jianshu.com/p/5b21377cf69b日志命令adb logcat 查看日志详细内容可参见ADB Usage Complete / ADB 用法大全官方文档Listing of logcat Command Options他人整合 http://jiongbull.com/2016/03/17/adb%E5%91%BD%E4%BB%A4/更...
2020-01-17 15:54:42
134
原创 ubuntu18.04 tensorflow以及tensorflow lite源码编译C++库
为了编译TensorFlow的源代码,除了要有gcc(版本不低于4.8)支持之外,还需要安装Google自产的编译构建工具,类似于cmake。英文阅读理解能力强的朋友可以直接阅读官方文档:https://www.tensorflow.org/install/source1.tensorflow下载git clone https://github.com/tensorflow/tensorflo...
2019-12-25 15:50:48
1579
2
原创 TensorFlow-Slim的使用
1)准备数据集,修改download_and_convert_flowers.py将数据集转化成tfrecord格式第43行 _NUM_VALIDATION = 300 #修改为验证集的图片数量第49行 _NUM_SHARDS = 4 #修改为要生成的TFRECORD的数量第84行 把flower_photo修改为数据所存放的文件夹名称wk_data第102行 修改output_file...
2019-12-24 13:49:22
100
转载 目标检测模型的评估指标mAP详解(附代码)
转 目标检测模型的评估指标mAP详解(附代码) 2018年12月10日 15:38:48 别说话写代码 阅读数:534 ...
2019-03-30 16:53:46
999
转载 Caffe 的深度学习训练全过程
本文为大数据杂谈 4 月 20 日微信社群分享内容整理。今天的目标是使用 Caffe 完成深度学习训练的全过程。Caffe 是一款十分知名的深度学习框架,由加州大学伯克利分校的贾扬清博士于 2013 年在 Github 上发布。自那时起,Caffe 在研究界和工业界都受到了极大的关注。Caffe 的使用比较简单,代码易于扩展,运行速度得到了工业界的认可,同时还有十分成熟的社区。对于刚开始学习深...
2019-03-28 15:43:03
1941
转载 OpenCV调用caffe版本MobilenetSSD
opencv for java之——深度学习目标检测MobileNet-SSD当前,在目标检测领域,基于深度学习的目标检测方法在准确度上碾压传统的方法。基于深度学习的目标检测先后出现了RCNN,FastRCNN,FasterRCNN, 端到端目标检测方法YOLO,YOLO-9000,YOLO-v3, MobileNet-SSD,以及Mask-RCNN等。MobileNet是...
2019-03-14 20:33:58
1579
1
原创 pragma message: This header is deprecated. Use boost/integer/integer_log2.hpp instead
在编译caffe的过程中,会出现/usr/local/include/boost/pending/integer_log2.hpp:7:89: note: #pragma message: This header is deprecated. Use <boost/integer/integer_log2.hpp> instead.这是因为使用的是boost1.69.0版本,目前boo...
2019-03-14 15:00:21
1228
转载 ubuntu16中编译boost1.61.0库
转载地址linux系统自带python2.7,boost编译后会生成libboost_python27.so,但有些应用需要libboost_python3,下面我们就来编译。进入boost源文件目录boost_1_67_0,配置仅仅编译python,python路径指向anaconda3中的python3.6。./bootstrap.sh --with-libraries=python -...
2019-03-06 17:47:17
158
原创 ubuntu18.04开机直接进入tty,无法进入图形化界面
问题描述:ubuntu18.04在屏保之后,输入密码,无法进入图形化界面,当重启之后,直接进入命令行界面解决的办法为:sudo apt install ubuntu-desktop
2019-03-06 14:13:24
17908
11
转载 Ubuntu 16.04配置caffe-ssd
转载地址 1. 安装依赖项sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-devsudo apt-get install libhdf5-serial-...
2019-03-06 09:49:16
222
转载 导向滤波算法的实现
导向滤波算法的实现 由上篇导向滤波算法分析,根据(5)~(8)式就可以计算输出图像Q (5) (6) (7) (8)其中,,/ai和/bi的结果要计算所有覆盖了像素i的窗口Wk的ak和bk的平均值。除了用平均值,在实际应用中,我还看到过其他的计算/ai和/bi的方法。比如根据像素i在窗口Wk的位置,给予不同的权重。如果i距离窗口Wk的中心位置越远,则给予ak和...
2019-01-04 15:06:54
404
转载 导向滤波算法分析
转载地址:https://www.cnblogs.com/mightycode/p/8005514.html 本文从数学上推导导向滤波的算法,其算法的具体实现在下一篇导向滤波算法的实现介绍。设引导图G,输入图像P,输出图像Q。导向滤波的目标是使得输入P和输出Q尽可能相同,同时纹理部分和引导图G相似。为了满足第一个目标,使输入P和输出Q尽可能相似,我们要求最小化平方差为...
2019-01-04 11:38:27
378
转载 Gamma校正及其OpenCV实现
参考:[1]http://www.cambridgeincolour.com/tutorials/gamma-correction.htm[2]http://en.wikipedia.org/wiki/Gamma_correction 一、什么是Gamma校正?Gamma校正是对输入图像灰度值进行的非线性操作,使输出图像灰...
2018-12-18 15:01:18
457
转载 undistortPoints()函数用法总结
转载地址:https://blog.csdn.net/qq_15505637/article/details/76197820?locationNum=5&fps=1https://stackoverflow.com/questions/8499984/how-to-undistort-points-in-camera-shot-coordinates-a...
2018-12-14 19:12:28
3994
转载 OpenCV实现SfM(三):多目三维重建
转载地址:https://blog.csdn.net/AIchipmunk/article/details/51232861注意:本文中的代码必须使用OpenCV3.0或以上版本进行编译,因为很多函数是3.0以后才加入的。 目录:问题简化求第三个相机的变换矩阵加入更多图像代码实现测试思考下载问题简化终于有时间来填坑了,这次一口气将双目重建扩展为多目重建吧。首先,...
2018-12-12 17:17:42
425
1
转载 张正友标定算法原理详解
转载地址:https://blog.csdn.net/u010128736/article/details/52860364
2018-12-12 11:34:09
133
转载 摄像机模型,畸变模型及畸变图像的矫正
&nbsp;摄像机模型,畸变模型及畸变图像的矫正luhan@mail.nankai.edu.cn注1:文中所有图的符号标注并不统一,一切以正文部分公式为准。l&nbsp; 摄像机模型:分若干步骤实现:1)&nbsp;&nbsp;&nbsp;&nbsp; 小孔成像映射:&nbsp;类似如上的小孔成像模型,重置一下摄像机坐标系位置,得如下小孔
2018-12-12 11:12:13
952
转载 ubuntu18.04配置opencv2.4.13 时报错
ubuntu18.04配置opencv2.4.13 时报错 ,错误信息是:CMake Warning at cmake/OpenCVPackaging.cmake:23 (message): CPACK_PACKAGE_VERSION does not match version provided by version.hpp根据报错信息“”cmake/OpenCVPackaging.cma...
2018-12-08 22:23:29
738
转载 大话深度残差网络(DRN)ResNet网络原理
一说起“深度学习”,自然就联想到它非常显著的特点“深、深、深”(重要的事说三遍),通过很深层次的网络实现准确率非常高的图像识别、语音识别等能力。因此,我们自然很容易就想到:深的网络一般会比浅的网络效果好,如果要进一步地提升模型的准确率,最直接的方法就是把网络设计得越深越好,这样模型的准确率也就会越来越准确。那现实是这样吗?先看几个经典的图像识别深度学习模型: 这几个模型都是在世界顶级比赛...
2018-11-29 17:48:04
215
转载 【人体姿态】Stacked Hourglass算法详解
概述本文使用全卷积网络解决人体姿态分析问题,截至2016年5月,在MPII姿态分析竞赛中暂列榜首,PCKh(误差小于一半头高的样本比例)达到89.4%。与排名第二的CPM(Convolutiona Pose Machine)1方法相比,思路更明晰,网络更简洁。 作者给出了基于Torch的代码和模型。单显卡,测试时间约130ms,使用cudnn4的训练时间约3天,比CPM方法有显著优势。本篇博...
2018-11-28 17:55:53
1389
1
转载 人体姿态估计综述(Human Pose Estimation Overview
主流数据集整理:http://blog.csdn.net/qq_36165459/article/details/78332172Part1:Single Person Pose Estimation2015 年之前的方法都是回归出精确的关节点坐标( x,y ),采用这种方法不好的原因是人体运动灵活,模型可扩展性较差。1《Flowing ConvNets for Human Pose ...
2018-11-28 16:47:14
403
转载 AlphaPose论文笔记《RMPE: Regional Multi-person Pose Estimation》
感谢此博文(https://blog.csdn.net/TwT520Ly/article/details/79258594)的翻译,参考了该博文的很多内容,在他的基础上做了更加细节的补充和总结:上海交通大学AlphaPose多人姿态估计论文RMPE:Regional Multi-Person Pose Estimation该论文自顶向下方法,SSD-512检测人+stacked ...
2018-11-28 16:39:33
649
转载 深度学习中常见的相关概念及TensorFlow中的batch和minibatch
转载地址 在刚开始学习使用TF的过程中,我不是很理解什么是“batch”。也经常有人问,到底minibatch是干什么的?然而这是一个在TensorFlow中,或者说很多DL的框架中很常见的词。这个解释我觉得比较贴切也比较容易理解。引用如下:深度学习的优化算法,说白了就是梯度下降。每次的参数更新有两种方式。第一种,遍历全部数据...
2018-11-21 20:52:03
552
转载 人体姿态估计数据集整理(Pose Estimation/Keypoint)
LSP地址:http://sam.johnson.io/research/lsp.html样本数:2K关节点个数:14全身,单人FLIC地址:https://bensapp.github.io/flic-dataset.html样本数:2W关节点个数:9全身,单人MPII地址:http://human-pose.mpi-inf.mpg.de/样本数:25K关节点个数:...
2018-11-21 14:55:04
2389
1
原创 win10+caffe+cuda9+cudnn7+vs2017博客地址
https://blog.csdn.net/fengtaoO08/article/details/83023428 Win10使用VS2017安装Caffe详细总结https://blog.csdn.net/chris_zhangrx/article/details/79234568 Windows下 Caffe C++接口的调用https://blog.csdn.net/qq_2859727...
2018-11-14 15:37:12
1940
转载 TensorFlow 如何构建高性能的数据输入管道(Pipeline)
本篇主要介绍怎么使用 tf.data API 来构建高性能的输入 pipeline。tf.data官方教程详见前面的博客<<<<<<<<<<tf.data官方教程目录1. 输入管道结构2. 优化输入管道的性能2.1 Pipelinin...
2018-11-09 13:55:27
2934
转载 Batch Normalization详细解读
转 Batch Normalization详细解读 &amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp;&amp;nbsp; &
2018-11-06 21:05:43
8653
3
转载 caffe数据同步
cpu_data()和mutable_cpu_data() 区别: mutable_cpu_data()多了一句head_ = HEAD_AT_CPU;是因为它返回的cpu_ptr_是可以被修改的,不像cpu_data()中返回(const void*)cpu_ptr_不可修改,这样,在下一次cpu或者gpu数据同步的时候,会知道这里的数据可能被修改过。const void* Synced...
2018-11-01 20:50:24
52
转载 Ubuntu安装adb
1、通过apt-get安装adbsudo add-apt-repository ppa:nilarimogard/webupd8sudo apt-get updatesudo apt-get install android-tools-adb将android设备连接至电脑,执行adbshell会提示“error:device not found”2、将android设备连接至电脑,...
2018-10-17 20:45:21
13921
空空如也
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人 TA的粉丝