题目描述
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m - 1] 。请问 k[0]k[1]…*k[m - 1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
2 <= n <= 1000
方法一:使用数学推导,具体来说不属于算法,下次更新动态规划算法
同时和一的区别是有大数,需要考虑是否会溢出,所以使用循环求余,保证结果正确
提交结果
方法一
package main
import (
"fmt"
)
func main() {
fmt.Println(cuttingRope(120))
}
func cuttingRope(n int) int {
if n == 2 || n == 3 {
return n - 1
} else if n%3 == 0 {
return qq(3, n/3)
} else if n%3 == 1 {
return qq(3, n/3-1) * 2 % 1000000007 * 2 % 1000000007
} else if n%3 == 2 {
return qq(3, n/3) * 2 % 1000000007
}
return 0
}
func qq(x, n int) int {
r := 1
for i := 0; i < n; i++ {
r = r * x % 1000000007
}
return r
}
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/jian-sheng-zi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。