连续子数组的最大和

题目描述

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

1 <= arr.length <= 10^5
-100 <= arr[i] <= 100

解题思路

如果这一位小于0,并且之前的数组也是小于0,那么就说明不符合条件。
如果监测到这一位大于0,那么从这一位开始计算,加上下一位只要大于0,那么就可以一直加,同时修改下一位为计算到的和,那么就可以保证是一直加的,并且采用修改原数组,也保存了所有的结果,最后循环找到最大即可。
时间复杂度,因为存在两个for循环,是串行的,所以时间复杂度为O(n)
空间复杂度,因为只存在一个数组和两个数字,所以空间复杂度为O(1)

提交结果

在这里插入图片描述

package main

import "fmt"

func main() {
    a := []int{-2, 1, -3, 4, -1, 2, 1, -5, 4}
    fmt.Println(maxSubArray(a))
}
func maxSubArray(nums []int) int {
    a := len(nums)
    x := 0
    for b := 0; b < a; b++ {
        if x > 0 {
            nums[b] = x + nums[b]
            x = nums[b]
        }
        if nums[b] > 0 && x <= 0 {
            x = nums[b]
        }
    }
    x=nums[0]
    for len(nums) > 0 {
        if nums[0] > x {
            x = nums[0]
        }
        nums = nums[1:]
    }
    return x
}

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值