ZOJ 3329 One Person Game(概率DP,求期望)

参考:

http://www.cnblogs.com/kuangbin/archive/2012/10/03/2710648.html

http://blog.csdn.net/morgan_xww/article/details/6775853

本题通过代换系数,化简后求系数。

一般形成环的用高斯消元法求解。但是此题都是和dp[0]相关。所有可以分离出系数。

/*
ZOJ 3329
题意:有三个骰子,分别有k1,k2,k3个面。
每次掷骰子,如果三个面分别为a,b,c则分数置0,否则加上三个骰子的分数之和。
当分数大于n时结束。求游戏的期望步数。初始分数为0

设dp[i]表示达到i分时到达目标状态的期望,pk为投掷k分的概率,p0为回到0的概率
则dp[i]=∑(pk*dp[i+k])+dp[0]*p0+1;
都和dp[0]有关系,而且dp[0]就是我们所求,为常数
设dp[i]=A[i]*dp[0]+B[i];
代入上述方程右边得到:
dp[i]=∑(pk*A[i+k]*dp[0]+pk*B[i+k])+dp[0]*p0+1
     =(∑(pk*A[i+k])+p0)dp[0]+∑(pk*B[i+k])+1;
     明显A[i]=(∑(pk*A[i+k])+p0)
     B[i]=∑(pk*B[i+k])+1
     先递推求得A[0]和B[0].
     那么  dp[0]=B[0]/(1-A[0]);
*/

const double eps = 1e-10;
const int MAXN = 600;

//double dp[MAXN][MAXN];
double A[MAXN];
double B[MAXN];
double p[MAXN];
int n, k1, k2, k3, a, b, c;

int main ()
{
    int T;
    RI(T);
    while (T--)
    {
        RI(n);
        RIII(k1, k2, k3);
        RIII(a, b, c);
        double p0 = 1.0 / k1 / k2 / k3;
        CLR(p, 0);
        for (int i = 1; i <= k1; i++)
            for (int j = 1; j <= k2; j++)
            for (int r = 1; r <= k3; r++)
            {
                if (i != a || j != b || r != c)
                        p[i + j + r] += p0;
            }
        CLR(A, 0);
        CLR(B, 0);
        for (int i = n; i >= 0; i--)
        {
            A[i] = p0;
            B[i] = 1;
            for (int j = 1; j + i <= n; j++)
            {
                A[i] += p[j] * A[j + i];
                B[i] += p[j] * B[j + i];
            }
        }
        printf("%.10lf\n", B[0] / (1 - A[0]));
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值