- 博客(20)
- 资源 (1)
- 收藏
- 关注
转载 文件系统的类型是 NTFS。 由于该卷已设置为写保护,因此 Windows 无法在上面运行磁检查
Disk check error: "The type of the file systyem is NTFS. Cannot lock current drive. Windows cannot run disk checking on this volume because it is write protected."Method 1: In the command prompt r
2016-05-11 09:33:28
43724
原创 梯度下降
参考了Udacity的一个梯度下降pdf理解梯度下降可以,先联想一下自己下山的过程。我们下山的过程是怎样的?想象一下下图红点下山的目标是什么,就是下到哪里?为了让函数来理解如何下山,我们来回忆一下导数。一个自变量的导数:两个自变量的导数,这里求的是偏导数,即对某一变量求导:
2016-04-17 19:11:59
1411
原创 朴素贝叶斯实践
朴素贝叶斯实践文本分类问题定义如果一个已经知道的文本分类数据,文本为Ti,文本的类别为ci。如果给你一个新的文本,问NT更可能属于某个类别。1、首先我们需要将文本抽象出来,如果要比较文本那要一个统一的标准,而这个标准如何选取呢?我们可以统计所有单词,得到一个词典。2、给词典的每个单词给一个索引,每个索引下存储的值来表示该单词是否出现了,或者说是出现了几次。3、对于每个文本,初始化一个单词向量,根据文
2016-03-21 20:06:19
1321
原创 朴素贝叶斯
基于概率论的分类方法:朴素贝叶斯背景贝叶斯理论和贝叶斯概率以托马斯·贝叶斯(1702-1761)命名,他证明了现在称为贝叶斯定理的一个特例。术语贝叶斯却是在1950年左右开始使用,很难说贝叶斯本人是否会支持这个以他命名的概率非常广义的解释。拉普拉斯证明了贝叶斯定理的一个更普遍的版本,并将之用于解决天体力学、医学统计中的问题,在有些情况下,甚至用于法理学。但是拉普拉斯并不认为该定理对于概率论很重要。他
2016-03-21 11:10:51
784
转载 谱聚类的理解
感谢: https://www.zybuluo.com/frank-shaw/note/117235 A tutorial on spectral clustering,Ulrike von Luxburg, 2007背景: 聚类是数据分析的常用技术,人们为了获得对数据的第一印象,尝试着去辨别每一组的行为相似性。谱聚类是聚类
2016-03-15 17:16:28
3170
原创 决策树实践,参考《机器学习实战》
数据集def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing
2016-03-13 21:06:19
748
原创 决策树个人理解
"""香农熵: 在信息论中,熵是接收的每条消息中包含的信息的平均量,又被称为信息熵、信源熵、平均自信息量。这里, 消息代表来自分布或数据流中的事件、样本或特征。 (熵最好理解为不确定性的量度而不是确定性的量度,因为越随机的信源的熵越大。) 决策树: 1、计算当前的信息熵HB,计算每个特征的信息熵的期望Hi,选择能使HB-Hi最大的那个 特征作为这次的分类特征。(能否理
2016-03-13 20:14:22
1168
1
转载 解决matplotlib中文乱码问题
解决中文乱码问题import matplotlib.font_manager as fmmyfont = fm.FontProperties(fname='C:/Windows/Fonts/msyh.ttc')import matplotlib.pyplot as pltplt.clf() # 清空画布plt.plot([1, 2, 3], [4, 5, 6])plt.
2016-03-11 10:36:09
849
原创 KNN算法
"""K最近邻算法kNN算法的核心思想是:存在一个样本数据集合,也称作训练样本集合,并且样本集中每个数据都存在标签,即我们知道样本集中每一个数据与所属分类的对应关系。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。一般来说K是不大于20的整数。最后,选择最相似数据中出现次数最多的分类,作为新数据的分类。 优点是:精
2016-03-06 16:37:21
695
原创 apriori和关联规则算法
问题的背景: 超市的会员卡记录了大量的用户购买数据,通过分析这些数据可以帮助商店分析用户的购买行为。从大规模数据集中寻找物品间的隐含关系被称为关联规则分析(association analysis)或关联规则学习(association rule learning)。举个例子说就是发现用户购买了一件商品(如帽子)后,会购买另一件商品(如围巾)的概率。关联规则分析需要从大规模的商品数据中,
2016-02-21 10:32:48
5704
转载 谱聚类
一、复杂网络中的一些基本概念1、复杂网络的表示 在复杂网络的表示中,复杂网络可以建模成一个图,其中,表示网络中的节点的集合,表示的是连接的集合。在复杂网络中,复杂网络可以是无向图、有向图、加权图或者超图。2、网络簇结构 网络簇结构(network cluster structure)也称为网络社团结构(network community structure),是复杂
2016-02-19 15:05:21
1936
原创 windows 安装python的scipy库,报错error: no lapack/blas resources found
如果使用pip install 包名安装出错如下错误,可以尝试使用如下的库链接下载 .whl 文件,再使用pip install whl的路径进行离线安装。C:\Users\xxx>easy_install scipySearching for scipyReading https://pypi.python.org/simple/scipy/Best match: scipy 0.1
2016-02-19 13:15:39
7561
原创 qt5中文乱码解决方式
方法一使用QString::fromLocal8Bit("中文字符串");方法二:QStringLiteralQStringLiteral("中文字符串"); 方法三:#include QTextCodec *codec = QTextCodec::codecForName("GB18030");codec->toUnicode("中文字符串
2015-05-27 20:13:34
587
原创 关于继承过程中的重定义重写的小结:
关于继承过程中的重定义重写的小结:继承加上重定义(没使用virtual关键字),则从当前指针属于的域开始往基类找继承加上重写(使用了virtual关键字),则从当前对象属于的域开始往基类找如果使用了域名那么会从该域开始往基类找(不管是重定义还是重写)。重载只限定在该域中,如果父类有两个名字f1,f2重载,那么子类有一个函数和父类同名,那么
2015-04-22 21:39:42
643
转载 有向图强连通分量的Tarjan算法
转自:https://www.byvoid.com/blog/scc-tarjan[有向图强连通分量]在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。非强连通图有向图的极大强连通子图,称为强连通分量(strongly connected compon
2015-03-01 09:48:14
512
转载 opencv直方图统计2
下面左图为反投影映射结果meanshift和camshift源自http://www.jianshu.com/p/436743802642
2015-01-15 14:59:29
426
转载 opencv直方图统计1
参考自opencv手册图像直方图:用于统计图像的信息。作用:利用反投影映射检测图像信息。meanshift和camshift利用了直方图的信息进行物体跟踪。利用图像均衡化可调整图像的对比度,使图像更清晰。等等函数介绍:统计直方图函数:cv::(&image,1, // histogram of 1 image onlychannels, // t
2015-01-15 14:56:09
702
转载 纹理分析
参考自:1. 引言 纹理是对图象的象素灰度级在空间上的分布模式的描述,反映物品的质地,如粗糙度、光滑性、颗粒度、随机性和规范性等。当图象中大量出现同样的或差不多的基本图象元素(模式)时,纹理分析是研究这类图象的最重要的手段之一,此外分形方法也十分重要[2]。 描述一块图象区域的纹理有三种主要的方法,统计分析方法、结构分析方法和频谱分
2015-01-06 14:52:40
1714
转载 opencv kmans 小结
K_means参考自一个不错的博客http://coolshell.cn/articles/7779.html问题K-Means算法主要解决的问题如下图所示。我们可以看到,在图的左边有一些点,我们用肉眼可以看出来有四个点群,但是我们怎么通过计算机程序找出这几个点群来呢?于是就出现了我们的K-Means算法(Wikipedia链接)
2015-01-01 20:32:04
1002
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人