
opencv
文章平均质量分 59
要努力啊啊啊
努力学习,坚持就是胜利✌。
展开
-
OpenCV——总结《车牌识别》
hsv提取蓝色部分_pic2.111100010000_pic。原创 2023-06-26 16:11:37 · 12692 阅读 · 2 评论 -
OpenCV——总结《车牌识别》之《常用的函数介绍》
用于创建形态学操作的结构元素(structuring element)。参数解释:shape:结构元素的形状,可以是以下值之一:cv2.MORPH_RECT:矩形结构元素。cv2.MORPH_CROSS:十字形结构元素。cv2.MORPH_ELLIPSE:椭圆形结构元素。ksize:结构元素的尺寸,表示结构元素的宽度和高度。可以是一个整数,表示正方形结构元素的边长;或者是一个元组 (width, height),表示矩形结构元素的宽度和高度。原创 2023-06-26 11:52:40 · 1315 阅读 · 0 评论 -
OpenCV——实验结果输出《图像金字塔》和《图像轮廓》
先对图片进行放大处理;再对图片进行减小处理;最后对图片进行增大和减小,然后和原图进行对比。原创 2023-06-22 22:46:13 · 218 阅读 · 0 评论 -
OpenCV——实验结果输出《图像金字塔》和《图像轮廓》
1.高斯金字塔2.拉普拉斯金字塔原创 2023-06-22 09:38:50 · 64 阅读 · 0 评论 -
OpenCV——实验结果输出《图像梯度》算子
精度要求不高可以考虑Sobel边缘提取方法, 反之考虑Canny边缘提取方法,还熟悉Laplance算子,由于对噪声比较敏感,常不用在边缘检测上。Canny算法不容易受到噪声干扰,利用强弱边缘,即弱边缘和强边缘相连时,才将弱边缘考虑,从而容易检测到真正的边缘,即定位精度比较高.Sobel算子对灰度渐变,多噪声图片处理效果很好,但对边缘定位精度较差,即定位不准确(大多数边缘不止一个像素);对于边缘提取算法,我们一般采用Sobel算子检测方法和Canny算法,这个图显示的是Canny边缘检测。原创 2023-06-21 17:05:46 · 118 阅读 · 0 评论 -
OpenCV——《图像平滑》结果输出对比《形态学操作》
图像平滑是一项简单且使用频率很高的图像处理方法,可以用来压制、弱化或消除图像中的细节、突变、边缘和噪声,最常见的是用来减少图像上的噪声。常用的滤波器主要为:均值滤波器:并不能完全消除噪声,只能相对消除噪声。中值滤波器:主要用于椒盐噪声,效果会好点。高斯滤波器:进行平滑的同时,保持更好的分布。_show该结果从左到到右分别为原图、均值、方框、高斯滤波的三种比较方式。原创 2023-06-21 16:43:23 · 296 阅读 · 0 评论 -
OpenCV——实验结果输出《图像基本操作》
图像融合主要使用的函数为。原创 2023-06-21 13:49:50 · 301 阅读 · 0 评论 -
OpenCV——《直方图操作》和《模版匹配》
1.直方图均衡化img = cv2.imread('clahe.jpg',0)plt.hist(img.ravel(),256)plt.show()#旨在使得图像整体效果均匀,黑与白之间的各个像素级之间的点更均匀一点。equ = cv2.equalizeHist(img)plt.hist(equ.ravel(),256)plt.show()#进行对比,均值化之后的,没有均值化之后的。res = np.hstack((img,equ))cv_show('res',res)直方图均衡过后原创 2023-06-21 13:29:00 · 232 阅读 · 0 评论 -
OpenCV——《bitwise_and》mask的操作以及直方图的操作
bitwise_and该函数是一个and操作当两者全为1的时候才会为1,有0则0.原创 2023-06-20 22:45:16 · 738 阅读 · 0 评论 -
OpenCV——总结《图像处理-3》形态学操作
【代码】OpenCV——总结《图像处理-3》形态学操作。原创 2023-06-20 19:51:10 · 197 阅读 · 0 评论 -
OpenCV——总结《图像处理-2》
OpenCV——总结《图像处理-2》原创 2023-01-31 17:41:18 · 247 阅读 · 0 评论 -
OpenCV——总结《图像处理-1》
OpenCV——总结《图像处理-1》原创 2023-01-30 22:31:38 · 1132 阅读 · 0 评论 -
OpenCV——总结《图像基本操作》
OpenCV——总结《图像基本操作》原创 2023-01-30 20:54:23 · 2171 阅读 · 1 评论 -
OpenCV——总结《图像处理》
OpenCV——总结《图像处理》原创 2023-01-30 17:28:17 · 919 阅读 · 0 评论