欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:历年CSP-J复赛真题解析 | 汇总_热爱编程的通信人的博客-CSDN博客
【题目来源】
洛谷:P9751 [CSP-J 2023] 旅游巴士 - 洛谷 (luogu.com.cn)
【题目描述】
小Z打算在国庆假期期间搭乘旅游巴士去一处他向往已久的景点旅游。
旅游景点的地图共有处地点,在这些地点之间连有条道路。其中号地点为景区入口,号地点为景区出口。我们把一天当中景区开门营业的时间记为时刻,则从时刻起,每间隔单位时间便有一辆旅游巴士到达景区入口,同时有一辆旅游巴士从景区出口驶离景区。
所有道路均只能单向通行。对于每条道路,游客步行通过的用时均为恰好单位时间。
小Z希望乘坐旅游巴士到达景区入口,并沿着自己选择的任意路径走到景区出口,再乘坐旅游巴士离开,这意味着他到达和离开景区的时间都必须是k的非负整数倍。由于节假日客流众多,小Z在坐旅游巴士离开景区前只想一直沿着景区道路移动,而不想在任何地点(包括景区入口和出口)或者道路上逗留。
出发前,小Z忽然得知:景区采取了限制客流的方法,对于每条道路均设置了一个“开放时间”,游客只有不早于时刻才能通过这条道路。
请你帮助小Z设计一个旅游方案,使得他乘坐旅游巴士离开景区的时间尽量地早。
【输入】
输入的第一行包含个正整数,表示旅游景点的地点数、道路数,以及旅游巴士的发车间隔。
输入的接下来行,每行包含个非负整数,表示第条道路从地点出发,到达地点,道路的“开放时间”为。
【输出】
输出一行,仅包含一个整数,表示小Z最早乘坐旅游巴士离开景区的时刻。如果不存在符合要求的旅游方案,输出-1。
【输入样例】
5 5 3
1 2 0
2 5 1
1 3 0
3 4 3
4 5 1
【输出样例】
6
【解题思路】
【算法标签】
《洛谷 P9751 旅游巴士》 CSP-J入门级 2023 O2优化
【代码详解】
#include <bits/stdc++.h>
using namespace std;
const int N=10005, K=105;
int n, m, k;
vector<int> e[N], t[N]; // e用来保存邻接关系表,t用来保存每条路径的开放时间
struct node {
int x, k; // x为第i个结点,k为对k取余数的值
};
int dis[N][K]; // 定义dis,保存到达某个点的时间,如果其为0,说明是k的倍数(分层图思想)
bool bfs(int mid)
{
memset(dis, -1, sizeof(dis));
queue<node> q;
dis[n][0] = mid*k; // 开始倒推,从mid*k时刻递减去判断,每过一个节点减1。0表示起点n为k的倍数。(分层图思想)
q.push(node{n,0}); // 将n这个结点加入队列中
while (!q.empty()) {
int x = q.front().x, b = q.front().k; // 取出队首,获得其节点编号,以及k
q.pop(); //弹出队首
if (dis[x][b]==0) continue; // 如果走到某个点时间已经为0,说明已经找到
for (int i=0; i<e[x].size(); i++) { // 在x的邻接点中进行查找
if (t[x][i]>=dis[x][b]) continue; // 如果该条链路的开放时间大于到达该点的时刻,就退出该次循环(无法通行的)
int y = e[x][i], p = (b+k-1) % k; // 邻接点y,p为减1后的时刻,注意需要+k并对k取余
if (dis[y][p]!=-1) continue; // 如果这个点搜索过,则继续
dis[y][p] = dis[x][b] - 1; // 如果这个点没有搜索过,则时间在前一个点的时间上减1
q.push(node{y, p}); // 把这个点加入队列中
}
}
if (dis[1][0] == -1 ) return false; // 判断dis[1][0]是否可达,不可达返回false。0表示达到1号点时时间为k的倍数(分层图思想)
else return true; //可达返回true
}
int main()
{
cin >> n >> m >> k; // 输入n、m和k
for (int i=1; i<=m; i++) { // for循环遍历m条路径
int u, v, a;
cin >> u >> v >> a; // 输入u、v和a
e[v].push_back(u); // 从终点倒推保存,保存每个节点的邻接点
t[v].push_back(a); // 从终点倒推保存,保存每条路径的开放时间
}
int l = 0, r = 2e6; // 定义二分搜索的左右边界
while (l<r) { // 使用二分法判断
int mid = (l+r)/2; // 二分中间点
if (bfs(mid)) r = mid; // 如果可以找到路径,就去找更少的时间
else l = mid+1; // 否则,就找更大的时间
// cout << "mid: " << mid << endl;
}
if (r==2e6) cout << "-1"; // 如果最大时间都没有找到路径,那就输出-1
else cout << l*k << endl; // l和r是k的倍数,所以最后时间还需要*k(最后mid==l)
// cout << "l: " << l << endl;
return 0;
}
#include <bits/stdc++.h>
using namespace std;
// 定义全局变量
int n, m, k; // n:节点数,m:边数,k:周期参数
vector<pair<int, int>> g[10005]; // 邻接表存储图,pair<目标节点, 边权>
int dis[10005][105]; // dis[i][j]表示到达节点i时剩余能量为j*k时的最大剩余步数
// BFS函数:检查给定初始能量mid*k是否能到达终点
bool bfs(int mid) {
memset(dis, -1, sizeof(dis)); // 初始化距离数组为-1
queue<pair<int, int>> q; // BFS队列,存储<节点, 剩余能量模k>
dis[n][0] = mid * k; // 初始状态:在节点n,剩余能量为mid*k
q.push({n, 0});
while (!q.empty()) {
pair<int, int> u = q.front();
int x = u.first; // 当前节点
int b = u.second; // 剩余能量模k
q.pop();
if (dis[x][b] == 0) continue; // 能量耗尽,跳过
// 遍历当前节点的所有邻接边
for (int i = 0; i < g[x].size(); i++) {
pair<int, int> pr = g[x][i];
int y = pr.first; // 邻接节点
int a = pr.second; // 边权
// 检查剩余能量是否足够通过这条边
if (dis[x][b] - 1 < a) continue;
int p = (b + k - 1) % k; // 计算新的剩余能量模k
if (dis[y][p] != -1) continue; // 已访问过,跳过
dis[y][p] = dis[x][b] - 1; // 更新剩余步数
q.push({y, p});
}
}
// 检查是否能到达节点1且剩余能量模k为0
return dis[1][0] != -1;
}
int main() {
// 输入数据
cin >> n >> m >> k;
for (int i = 1; i <= m; i++) {
int u, v, a;
cin >> u >> v >> a;
g[v].push_back({u, a}); // 构建反向图
}
// 二分查找最小初始能量
int l = 0, r = 2000000 / k, ans = -1;
while (l < r) {
int mid = (l + r) / 2;
if (bfs(mid)) { // 检查mid*k能量是否足够
ans = mid * k;
r = mid; // 尝试更小的能量
} else {
l = mid + 1; // 需要更大的能量
}
}
// 输出结果
cout << ans << endl;
return 0;
}
【运行结果】
5 5 3
1 2 0
2 5 1
1 3 0
3 4 3
4 5 1
6