题目描述
小 Z 打算在国庆假期期间搭乘旅游巴士去一处他向往已久的景点旅游。
旅游景点的地图共有 n n n 处地点,在这些地点之间连有 m m m 条道路。其中 1 1 1 号地点为景区入口, n n n 号地点为景区出口。我们把一天当中景区开门营业的时间记为 0 0 0 时刻,则从 0 0 0 时刻起,每间隔 k k k 单位时间便有一辆旅游巴士到达景区入口,同时有一辆旅游巴士从景区出口驶离景区。
所有道路均只能单向通行。对于每条道路,游客步行通过的用时均为恰好 1 1 1 单位时间。
小 Z 希望乘坐旅游巴士到达景区入口,并沿着自己选择的任意路径走到景区出口,再乘坐旅游巴士离开,这意味着他到达和离开景区的时间都必须是 k k k 的非负整数倍。由于节假日客流众多,小 Z 在旅游巴士离开景区前只想一直沿着景区道路移动,而不想在任何地点(包括景区入口和出口)或者道路上停留。
出发前,小 Z 忽然得知:景区采取了限制客流的方法,对于每条道路均设置了一个“开放时间” a i a _ i ai,游客只有不早于 a i a _ i ai 时刻才能通过这条道路。
请帮助小 Z 设计一个旅游方案,使得他乘坐旅游巴士离开景区的时间尽量地早。
输入格式
输入的第一行包含 3 个正整数 n , m , k n, m, k n,m,k,表示旅游景点的地点数、道路数,以及旅游巴士的发车间隔。
输入的接下来 m m m 行,每行包含 3 个非负整数 u i , v i , a i u _ i, v _ i, a_ i ui,vi,ai,表示第 i i i 条道路从地点 u i u _ i ui 出发,到达地点 v i v _ i vi,道路的“开放时间”为 a i a _ i ai。
输出格式
输出一行,仅包含一个整数,表示小 Z 最早乘坐旅游巴士离开景区的时刻。如果不存在符合要求的旅游方案,输出 -1
。
样例 #1
样例输入 #1
5 5 3
1 2 0
2 5 1
1 3 0
3 4 3
4 5 1
样例输出 #1
6
提示
【样例 #1 解释】
小 Z 可以在 3 3 3 时刻到达景区入口,沿 1 → 3 → 4 → 5 1 \to 3 \to 4 \to 5 1→3→4→5 的顺序走到景区出口,并在 6 6 6 时刻离开。
【样例 #2】
见附件中的 bus/bus2.in
与 bus/bus2.ans
。
【数据范围】
对于所有测试数据有: 2 ≤ n ≤ 1 0 4 2 \leq n \leq 10 ^ 4 2≤n≤104, 1 ≤ m ≤ 2 × 1 0 4 1 \leq m \leq 2 \times 10 ^ 4 1≤m≤2×104, 1 ≤ k ≤ 100 1 \leq k \leq 100 1≤k≤100, 1 ≤ u i , v i ≤ n 1 \leq u _ i, v _ i \leq n 1≤ui,vi≤n, 0 ≤ a i ≤ 1 0 6 0 \leq a _ i \leq 10 ^ 6 0≤ai≤106。
测试点编号 | n ≤ n \leq n≤ | m ≤ m \leq m≤ | k ≤ k \leq k≤ | 特殊性质 |
---|---|---|---|---|
1 ∼ 2 1 \sim 2 1∼2 | 10 10 10 | 15 15 15 | 100 100 100 | a i = 0 a _ i = 0 ai=0 |
3 ∼ 5 3 \sim 5 3∼5 | 10 10 10 | 15 15 15 | 100 100 100 | 无 |
6 ∼ 7 6 \sim 7 6∼7 | 1 0 4 10 ^ 4 104 | 2 × 1 0 4 2 \times 10 ^ 4 2×104 | 1 1 1 | a i = 0 a _ i = 0 ai=0 |
8 ∼ 10 8 \sim 10 8∼10 | 1 0 4 10 ^ 4 104 | 2 × 1 0 4 2 \times 10 ^ 4 2×104 | 1 1 1 | 无 |
11 ∼ 13 11 \sim 13 11∼13 | 1 0 4 10 ^ 4 104 | 2 × 1 0 4 2 \times 10 ^ 4 2×104 | 100 100 100 | a i = 0 a _ i = 0 ai=0 |
14 ∼ 15 14 \sim 15 14∼15 | 1 0 4 10 ^ 4 104 | 2 × 1 0 4 2 \times 10 ^ 4 2×104 | 100 100 100 | u i ≤ v i u _ i \leq v _ i ui≤vi |
16 ∼ 20 16 \sim 20 16∼20 | 1 0 4 10 ^ 4 104 | 2 × 1 0 4 2 \times 10 ^ 4 2×104 | 100 100 100 | 无 |
算法思想(分层图最短路)
根据题目描述,小 Z 要从 1 1 1号地点(景区入口)移动到 n n n号地点(景区出口),这 n n n个点之间一共有 m m m条边,每条边的权值为 1 1 1。除此之外,题目中还两个要求:
- 从入口出发的时间和到达出口的时间必须是 k k k的倍数
根据第一个要求,在 k k k比较小的情况下,可以使用分层图的思想把每个点拆分成 k k k个状态,用 d i s [ u ] [ i ] dis[u][i] dis[u][i]表示到达 u u u点,并且花费时间满足 m o d k = i mod\ k = i mod k=i时的最早时刻,其中 0 ≤ i < k 0\le i<k 0≤i<k。那么到达景区入口的时间为 d i s [ 1 ] [ 0 ] dis[1][0] dis[1][0],乘坐旅游巴士离开景区的最早时间就是 d i s [ n ] [ 0 ] dis[n][0] dis[n][0]。
- 每条边均设置了一个“开放时间” a i a _ i ai,即只有不早于 a i a _ i ai时刻才能通过这条道路
- 在数据范围中可以发现,存在特殊性质 a i = 0 a _ i=0 ai=0的情况,即所有道路都在 0 0 0时刻开放,此时到达入口的时间越早越好,即 d i s [ 1 ] [ 0 ] = 0 dis[1][0]=0 dis[1][0]=0,然后求图中从点 1 1 1到达点 n n n的最短路即可。相邻点 u u u和 v v v的转移关系为 d i s [ v ] [ j ] = d i s [ u ] [ i ] + 1 dis[v][j]=dis[u][i]+1 dis[v][j]=dis[u][i]+1,其中 j = ( i + 1 ) % k j = (i+1) \% k j=(i+1)%k
- 在 a i ≠ 0 a _ i\ne 0 ai=0的情况下,也可以借助上述求最短路的思想,不过从 d i s [ u ] [ i ] dis[u][i] dis[u][i]转移到 d i s [ v ] [ j ] dis[v][j] dis[v][j]时,需要判断如果当前道路尚未开放,那么到达时间将向后延长 k k k的最小整数倍时间(可以理解为延后到达景区入口的时间),使得到达时间大于道路开放时间。
时间复杂度
- 使用堆优化版的Dijkstra求最短路,时间复杂度跟图中的边数和节点数相关
- 使用分层图的思想把每个点拆分成 k k k个状态,那么一共有 n × k n\times k n×k个状态
时间复杂度为 m × l o g ( n k ) m\times log(nk) m×log(nk)
代码实现
#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int N = 10010, K = 110, INF = 0x3f3f3f3f;
typedef pair<int, int> PII;
struct Node {
//u节点编号,i状态,d最短到达时间
int u, i, d;
//重载 < ,用于大顶堆按到达时间从小到大排序
bool operator < (const Node t) const
{
return d > t.d;
}
};
vector<PII> g[N]; //邻接表
/*
dis[u][i]表示到达第u处地点,并且到达时间mod k = i的情况下的最短距离
*/
int dis[N][K], st[N][K];
int main()
{
int n, m, k;
cin >> n >> m >> k;
for(int i = 0; i < m; i ++)
{
int u, v, w;
cin >> u >> v >> w;
g[u].push_back({v, w}); //从u到v建一条边,权值为开放时间
}
//初始状态,1号点在状态0时最短距离为0,其它点的最短距离为无穷大
memset(dis, 0x3f, sizeof dis);
dis[1][0] = 0;
//堆优化版Dijkstra求最短路,注意默认大顶堆,自定义比较规则
priority_queue<Node> q;
//初始状态加入优先队列,{点,状态,最短到达时间}
q.push({1, 0, dis[1][0]});
while(q.size())
{
//节点u,状态i
int u = q.top().u, i = q.top().i;
q.pop();
if(st[u][i]) continue; //该状态已经加入到集合中
st[u][i] = 1;
for(auto [v, w] : g[u]) //枚举邻接点v和道路的开放时间
{
int t = dis[u][i], j = (i + 1) % k;
//如果到达时间小于开放时间,则将到达时间向后延长若干个k的整数倍(向上取整)
if(t < w) t += (w - t + k - 1) / k * k;
//如果可以松弛到v点的时间
if(dis[v][j] > t + 1)
{
dis[v][j] = t + 1;
q.push({v, j, dis[v][j]});
}
}
}
if(dis[n][0] == INF) cout << -1;
else cout << dis[n][0];
return 0;
}