学习C++从娃娃抓起!记录下CSP-J备考学习过程中的题目,记录每一个瞬间。
附上汇总贴:历年CSP-J初赛真题解析 | 汇总
第1题
一个32位整型变量占用( )个字节。
A.4
B…8
C.32
D.128
【答案】:A
【解析】
基本单位是字节,位是最小单位。1个字节8位,32位就是4个字节
第2题
二进制数11.01在十进制下是( )。
A.3.25
B.4.125
C.6.25
D.11.125
【答案】:A
【解析】
2 1 + 2 0 + 2 − 1 + 2 − 2 = 3.25 2^1+2^0+2^{-1}+2^{-2}=3.25 21+20+2−1+2−2=3.25
第3题
下面的故事与( )算法有着异曲同工之妙。
从前有座山,山里有座庙,庙里有个老和尚在给小和尚讲故事:从前有座山,山里有座庙,庙里有个老和尚在给小和尚讲故事:从前有座山,山里有座庙,庙里有个老和尚给小和尚讲故事…
A.枚举
B.递归
C.贪心
D.分治
【答案】:B
【解析】
自己调用自己
第4题
逻辑表达式( )的值与变量A的真假无关。
A. ( A ∨ B ) ∧ ¬ A (A\lor B)\land \lnot A (A∨B)∧¬A
B. ( A ∨ B ) ∧ ¬ B (A\lor B)\land \lnot B (A∨B)∧¬B
C. ( A ∧ B ) ∨ ( ¬ A ∧ B ) (A\land B)\lor (\lnot A\land B) (A∧B)∨(¬A∧B)
D. ( A ∨ B ) ∧ ¬ A ∧ B (A\lor B)\land \lnot A\land B (A∨B)∧¬A∧B
【答案】:C
【解析】
A=0,B=0 | A=1,B=0 | A=0,B=1 | A=1,B=1 | |
---|---|---|---|---|
( A ∨ B ) ∧ ¬ A (A\lor B)\land \lnot A (A∨B)∧¬A | 0 | 0 | 1 | 0 |
( A ∨ B ) ∧ ¬ B (A\lor B)\land \lnot B (A∨B)∧¬B | 0 | 1 | ||
( A ∧ B ) ∨ ( ¬ A ∧ B ) (A\land B)\lor (\lnot A\land B) (A∧B)∨(¬A∧B) | 0 | 0 | 1 | 1 |
( A ∨ B ) ∧ ¬ A ∧ B (A\lor B)\land \lnot A\land B (A∨B)∧¬A∧B |
第5题
将(2,6,10,17)分别存储到某个地址区间为0~10的哈希表中,如果哈希函数h(x)=( ), 将不会产生冲突, 其中a mod b表示a除以b的余数。
A.x mod 11
B. x 2 x^2 x2 mod 11
C.2x mod 11
D. ⌊ x ⌋ \lfloor \sqrt x\rfloor ⌊x⌋ mod 11, 其中 ⌊ ⌋ \lfloor \ \rfloor ⌊ ⌋表示向下取整
【答案】:D
【解析】
哈希表(散列表),根绝关键码值直接访问的数据结构(根据计算结果从小到大存入),不冲突表示h(x)计算结果不同
2 | 6 | 10 | 17 | |
---|---|---|---|---|
x mod 11 | 2 | 6 | 10 | 6 |
x 2 x^2 x2 mod 11 | 4 | 3 | 1 | 3 |
2x mod 11 | 4 | 1 | 9 | 1 |
⌊ x ⌋ \lfloor \sqrt x\rfloor ⌊x⌋ mod 11 | 1 | 2 | 3 | 4 |
第6题
在十六进制表示法中,字母A相当于十进制中的( )。
A.9
B.10
C.15
D.16
【答案】:B
【解析】
16进制0,1,2,3,4,5,6,7,8,9,A,B,C,D,E对应10进制0~15
第7题
下图中所使用的数据结构是( )。
A.哈希表
B.栈
C.队列
D.二叉树
【答案】:B
【解析】
后进先出的数据结构,属于栈
第8题
在Windows资源管理器中, 用鼠标右键单击一个文件时, 会出现一个名为“复制”的操作选项,它的意思是( )。
A.用剪切板中的文件替换该文件
B.在该文件所在文件夹中,将该文件克隆一份
C.将该文件复制到剪切板,并保留原文件
D.将该文件复制到剪切板,并删除原文件
【答案】:C
【解析】
复制,文件保留
第9题
已知一棵二叉树有10个节点,则其中至多有( )个节点有2个子节点。
A.4
B.5
C.6
D.7
【答案】:A
【解析】
设有x个节点有2个子节点,则至少还有2x个节点,这2x个节点可能与前x个节点重合,最多重合x-1个,则整棵树最少有x+2x-(x-1)=2x+1个,2x+1≤10,解得x=4
第10题
在一个无向图中,如果任意两点之间都存在路径相连,则称其为连通图。下图是一个有4个顶点、6条边的连通图。若要使它不再是连通图,至少要删去其中的( )条1边。
A.1
B.2
C.3
D.4
【答案】:C
【解析】
每个节点有都3条边与别的节点相连,至少删3条边
第11题
二叉树的( )第一个访问的节点是根节点。
A.先序遍历
B.中序遍历
C.后序遍历
D.以上都是
【答案】:A
【解析】
先序遍历:根左右,中序遍历:左根右,后续遍历:左右根
第12题
以A0作为起点,对下面的无向图进行深度优先遍历时,遍历顺序不可能是( )。
A.A0,A1,A2,A3
B.A0,A1,A3,A2
C.A0,A2,A1,A3
D.A0,A3,A1,A2
【答案】:A
【解析】
A0, A1, A3, A2
A0, A3, A1, A2
A0, A2, A1, A3
A0, A2, A3, A1
访问A1后没有到底,不能访问A2
第13题
IPv4协议使用32位地址, 随着其不断被分配, 地址资源日趋枯竭。因此它正逐渐被使用( )位地址的IPv6协议所取代。
A.40
B.48
C.64
D.128
【答案】:D
【解析】
IPv6地址是128位
第14题
( )的平均时间复杂度为O(nlogn) , 其中n是待排序的元素个数。
A.快速排序
B.插入排序
C.冒泡排序
D.基数排序
【答案】:A
【解析】
快排的时间复杂度就是O(nlogn),插入和冒泡的平均时间复杂度是 O ( n 2 ) O(n^2) O(n2),基数排序由待排数字的位数决定
第15题
下面是根据欧几里得算法编写的函数,它所计算的是a和b的( )。
int euclid(int a, int b) {
if (b==0)
return a;
else
return euelid(b, a%b);
}
A.最大公共质因子
B.最小公共质因子
C.最大公约数
D.最小公倍数
【答案】:C
【解析】
辗转相除法求最大公约数
第16题
通常在搜索引擎中,对某个关键词加上双引号表示( )。
A.排除关键词,不显示任何包含该关键词的结果
B.将关键词分解,在搜索结果中必须包含其中的一部分
C.精确搜索,只显示包含整个关键词的结果
D.站内搜索,只显示关键词所指向网站的内容
【答案】:C
【解析】
加双引号是为了严格匹配搜索
第17题
中国的国家顶级域名是( )。
A.cn
B.ch
C.chn
D.china
【答案】:A
【解析】
.cn是中国顶级域名,china的简写。.ch是瑞士的
第18题
把64位非零浮点数强制转换成32位浮点数后,不可能( )。
A.大于原数
B.小于原数
C.等于原数
D.与原数符号相反
【答案】:D
【解析】
浮点数由符号位、尾码、解码组成,double类型转为float,符号位不变,精确位数不确定
第19题
下列程序中, 正确计算1, 2, …, 100这100个自然数之和sum(初始值为0)的是( )。
A.A
B.B
C.C
D.D
【答案】:A
【解析】
i必须要≤100,只有A选项满足
第20题
CCF NOIP复赛全国统一评测时使用的系统软件是( )。
A.NOI Windows
B.NOI Linux
C.NOI MacOS
D.NOI DOS
【答案】:B
【解析】
NOI Linux(北航开发的)
第21题
7个同学围坐一圈,要选2个不相邻的作为代表,有( )种不同的选法。
【答案】:14
【解析】
多少个不相邻的代表,就是求n边行有多少条对角线,n*(n-3)/2=14
第22题
某系统自称使用了一种防窃听的方式验证用户密码。密码是n个数 s 1 , s 2 , … , s n s_1,s_2,\dots,s_n s1,s2,…,sn, 均为0或1。该系统每次随机生成n个数 a 1 , a 2 , … , a n a_1,a_2,\dots,a_n a1,a2,…,an, 均为0或1, 请用户回答 s 1 a 1 + s 2 a 2 + ⋯ + s n a n s_1a_1+s_2a_2+\dots +s_na_n s1a1+s2a2+⋯+snan除以2的余数。如果多次的回答总是正确,即认为掌握密码。该系统认为,即使问答的过程被泄露,也无助于破解密码——因为用户并没有直接发送密码。
然而,事与愿违。例如,当n=4时,有人窃听了以下5次问答:
就破解出了密码= s 1 s_1 s1( ), s 2 s_2 s2( ), s 3 s_3 s3( ), s 4 s_4 s4( )。
【答案】:0 1 1 1
【解析】
第1组:(s1 + s2) mod 2 = 1 -> s2=1(2)
第2组:(s3 + s4) mod 2 = 0 -> s4=1(4)
第3组:(s2 + s3 + s4 ) mod 2 = 0
第4组:(s1+s2+s3) mod 2 = 0 -> s3=1(3)
第5组:s1 mod 2 = 0 -> s1=0(1)