《csp-j2024初赛真题》 解析

温馨提醒,以下解析为个人观点,还是得请大佬多多指教(可以喷,但不能说我是复制粘贴!

1.32 位int 类型的存储范围是(C)

A.-2147483647+2147483647

B.-2147483647+2147483648

C.-2147483648+2147483647

D.-2147483648+2147483648

首先,我们需要了解32位int类型是如何存储数据的。

在32位系统中,int类型通常占用4个字节,即32位。这32位中,第一位是符号位,用来表示正负,剩下的31位用来表示数值。

对于正数,符号位为0,剩下的31位直接表示其数值。

对于负数,符号位为1,剩下的31位表示其绝对值的二进制补码。

因此,32位int类型的存储范围是从-231到231-1,即-2147483648到2147483647。

对照选项,我们可以发现:

A. -2147483647+2147483647,这个范围不正确,因为它没有包含-2147483648。

B. -2147483647+2147483648,这个范围也不正确,因为它的上限超出了2147483647。

C. -2147483648+2147483647,这个范围是正确的,它完全符合32位int类型的存储范围。

D. -2147483648+2147483648,这个范围不正确,因为它的上限超出了2147483647。

所以,正确答案是C:-2147483648+2147483647。

个人评价:中等

2.计算(148-10102)*D16-1101z的结果,并选择答案的十进制值:(A)

A.13

B.14

C.15

D.16

首先,我们注意到表达式中的数字似乎混合了十进制和十六进制。为了进行计算,我们需要将所有数字转换为同一进制系统。在这个情况下,我们选择十进制进行计算,因为题目要求我们给出十进制的结果。

将十六进制数D16转换为十进制。
十六进制数D16等于十进制的162*13 + 161*1 + 160*6 = 256*13 + 16 + 6 = 3362。

将十六进制数1101z转换为十进制。
注意,z不是有效的十六进制数字。这可能是一个打印错误或题目错误。标准的十六进制数字包括0-9和A-F。如果我们假设z实际上是一个0(这是一个常见的假设,用于处理类似的输入错误),那么11010等于十进制的164*1 + 163*1 + 162*0 + 161*1 + 160*0 = 657920。

现在我们可以计算整个表达式。
(148 - 10102) * 3362 - 657920
= -10054 * 3362 - 657920
= -33590528 - 657920
= -34248448

但是,这个结果并不在选项A、B、C或D中。显然,这里有一个问题,很可能是因为原始表达式中的1101z不是一个有效的十六进制数。如果我们按照前面的假设,将z视为0,那么计算出的结果并不符合任何选项。

考虑到这可能是一个陷阱或错误的问题,我们应该重新审视原始表达式和可能的解释。然而,基于当前的信息和假设,我们无法得出与给定选项相匹配的答案。

如果这是一个测试或考试中的问题,建议向教师或考试机构寻求澄清。如果这是一个练习问题,那么可能是为了检验学生对进制转换和算术运算的理解,同时提醒他们注意无效或错误的输入。

总结:基于当前的信息和假设,无法得出与给定选项相匹配的答案。这个问题可能需要进一步的澄清或修正。

个人评价:中上

3.某公司有 10名员工,分为3个部门:A部门有4名员工,B部门有3名员工、C部门有3 名员工。现需要从这 10名员工中选出4名组成一个工作组,且每个部门至少要有1人。问有多少种选择方式?(B)
A.120
 

B.126
 

C.132
 

D.238

这是一道组合问题,需要考虑从三个不同部门中选择员工,且每个部门至少要有1人的条件。

首先,我们分析题目给出的条件:

总共有10名员工,分为A、B、C三个部门。
A部门有4名员工。
B部门有3名员工。
C部门有3名员工。
需要从这10名员工中选出4名组成一个工作组,且每个部门至少要有1人。

我们可以按照以下步骤来求解:

‌分组考虑‌
从A部门选1人,从B部门选1人,从C部门选2人的组合方式:

𝐶
4
1
×
𝐶
3
1
×
𝐶
3
2
=
4
×
3
×
3
=
36
C
4
    ​

1×C
3
    ​

1×C
3
    ​

2=4×3×3=36
从A部门选1人,从B部门选2人,从C部门选1人的组合方式:

𝐶
4
1
×
𝐶
3
2
×
𝐶
3
1
=
4
×
3
×
3
=
36
C
4
    ​

1×C
3
    ​

2×C
3
    ​

1=4×3×3=36
从A部门选2人,从B部门选1人,从C部门选1人的组合方式:

𝐶
4
2
×
𝐶
3
1
×
𝐶
3
1
=
6
×
3
×
3
=
54
C
4
    ​

2×C
3
    ​

1×C
3
    ​

1=6×3×3=54
‌汇总结果‌
将上述三种情况的组合方式相加,得到总的组合方式:

36
+
36
+
54
=
126
36+36+54=126

综上所述,从10名员工中选出4名组成一个工作组,且每个部门至少要有1人的选择方式有126种。

因此,答案是B.126。

个人评价:困难

4.以下哪个序列对应数组0至8的4位二进制格雷码(Gray code)?
A.0000,0001,0011,0010,0110,0111,0101,1000

B.0000,0001,0011,0010,0110,0111,0100,0101

C.0000,0001,0011,0010,0100,0101,0111,0110

D.0000,0001,0011,0010,0110,0111,0101,0100

格雷码(Gray code)是一种二进制编码系统,其中两个连续的数值仅有一个位数的差异。要找出0至8的4位二进制格雷码,我们可以从0开始,每次只改变一个位来得到下一个数值的格雷码。

我们来检验每个选项:

A. 0000, 0001,0011,0010,0110,0111,0101,1000

0000到0001:变化正确(只有最后一位变了)
0001到0011:变化正确(只有倒数第二位变了)
0011到0010:变化正确(只有最后一位变了)
0010到0110:变化正确(只有倒数第二位变了)
0110到0111:变化正确(只有最后一位变了)
0111到0101:变化正确(只有倒数第二位变了)
0101到1000:错误,这里变化了两位(应该是0100)

B. 0000,0001,0011,0010,0110,0111,0100,0101

0000到0001:变化正确
0001到0011:变化正确
0011到0010:变化正确
0010到0110:变化正确
0110到0111:变化正确
0111到0100:错误,这里变化了两位(应该是0101)

C. 0000,0001,0011,0010,0100,0101,0111,0110

0000到0001:变化正确
0001到0011:变化正确
0011到0010:变化正确
0010到0100:错误,这里变化了两位(应该是0110)

D. 0000,0001,0011,0010,0110,0111,0101,0100

0000到0001:变化正确
0001到0011:变化正确
0011到0010:变化正确
0010到0110:变化正确
0110到0111:变化正确
0111到0101:变化正确
0101到0100:变化正确

所以,只有选项D满足格雷码的条件,即任何两个相邻的代码只有一位二进制数不同。因此,答案是D。

个人评价:困难

5.记 1Kb 位 1024 字节(byte),1MB 位 1024KB,那么 1MB 是多少二进制位(bit)?

A.1000000

B.1048576

C.8000000

D.8388608

这是一道关于计算机存储单位转换v的问题。首先,我们需要明确计算机存储单位之间的关系,然后基于这些关系推导出答案。

‌单位定义与关系‌:
1 字节(byte)等于 8 位(bit)。
1KB(Kilobyte)等于 1024 字节(byte)。
1MB(Megabyte)等于 1024KB。
‌计算过程‌:
首先,将1MB转换为字节:1MB = 1024KB = 1024 * 1024 字节。
然后,将字节转换为位:1024 * 1024 字节 = 1024 * 1024 * 8 位。
进行计算:1024 * 1024 * 8 = 8388608 位。
‌匹配选项‌:
A. 1000000:不符合计算结果。
B. 1048576:不符合计算结果。
C. 8000000:不符合计算结果。
D. 8388608:与计算结果相符。

综上所述,1MB 等于 8388608 位(bit)。

因此,答案是 D. 8388608。

个人评价:简单

6.以下哪个不是 C++中的基本数据类型?
A. Int
B. float
C. struct
D. char

在C++中,基本数据类型(也称为内置数据类型)是直接由编程语言提供的类型。它们包括整数类型(如int)、浮点类型(如float)、字符类型(如char)等。

现在,我们逐一分析每个选项:

A. int:这是一个整数类型,属于C++中的基本数据类型。

B. float:这是一个浮点类型,用于表示有小数部分的数字,也是C++中的基本数据类型。

C. struct:这不是一个基本数据类型。struct是C++中用于定义用户自定义类型的关键字,它允许你将多个变量组合成一个单一的类型。

D. char:这是一个字符类型,用于存储单个字符,是C++中的基本数据类型。

综上所述,struct不是C++中的基本数据类型,而是用于定义复合数据类型的关键字。因此,正确答案是C。

个人评价:简单

7.以下哪个不是 C++中的循环语句?
A. for
B. while
C. do-while
D. repeat-untill

在C++中,循环语句用于重复执行一段代码直到满足特定条件。C++提供了几种循环语句,包括for、while和do-while。

现在,我们逐一分析每个选项:

A. for:这是C++中的循环语句,用于按照指定的次数重复执行一段代码。

B. while:这也是C++中的循环语句,用于在给定条件为真时重复执行一段代码。

C. do-while:这同样是C++中的循环语句,它至少执行一次代码块,然后在给定条件为真时重复执行。

D. repeat-until:这不是C++中的循环语句。C++中没有repeat-until这种循环结构。在其他一些编程语言中可能存在这样的结构,但在C++中不是有效的循环语句。

因此,不是C++中的循环语句的是D选项:repeat-until。

个人评价:简单

8.在 C/C++中,(char)('a'+13)与下面的哪一个值相等(B)

A. 'm'

B. 'n'

C. 'z'

D. '3'

在 C/C++ 中,字符常量(如 'a')实际上是以整数形式存储的,具体来说,是按照 ASCII 码来存储的。字符 'a' 的 ASCII 码是 97,字符 'n' 的 ASCII 码是 110。

当你执行表达式 (char)('a' + 13) 时,实际上是将字符 'a' 的 ASCII 码值(97)加上 13,得到 110。然后,这个值被强制转换为 char 类型,对应的 ASCII 码值为 110 的字符是 'n'。

所以,(char)('a' + 13) 与值 'n' 相等。

因此,正确答案是 B. 'n'。

个人评价:简单

9.假设有序表中有 1000个元素,则用二分法查找元素x最多需要比较(B)次

A.25

B.10

C.7

D.1

在二分查找算法中,每次比较都会将搜索范围缩小一半。因此,对于具有 
𝑛
n 个元素的有序表,最多需要进行的比较次数可以通过计算 

log

2
(
𝑛
+
1
)

⌈log
2
    ​

(n+1)⌉ 来得出(这里的 



⌈⋅⌉ 表示向上取整)。

对于本题,有序表中有 1000 个元素,所以最多需要进行的比较次数为:


log

2
(
1000
+
1
)

=

log

2
(
1001
)

=
10
⌈log
2
    ​

(1000+1)⌉=⌈log
2
    ​

(1001)⌉=10

因此,用二分法查找元素 
𝑥
x 最多需要比较 10 次。所以正确答案是 B.10。

个人评价:较简单

10.下面哪一个不是操作系统名字(A)
A. Notepad
 

B. Linux
 

C. Windows
 

D. macOS

这是一道关于识别非操作系统名称的问题。首先,我们需要明确什么是操作系统,并了解每个选项代表的含义。

操作系统是计算机的基础软件,它管理计算机的硬件资源,为上层的应用程序提供稳定的运行环境。常见的操作系统有Windows、Linux、macOS等。

分析每个选项:

A. Notepad:Notepad实际上是Windows系统中的一个文本编辑器程序,而不是操作系统。
B. Linux:Linux是一个开源的操作系统,广泛应用于服务器、个人电脑等领域。
C. Windows:Windows是微软公司开发的操作系统,广泛应用于个人电脑。
D. macOS:macOS是苹果公司开发的专有操作系统,只能在苹果电脑上运行。
对比各选项与操作系统的定义,可以明显看出Notepad是一个文本编辑器程序,不属于操作系统范畴。

综上所述,Notepad(A选项)不是操作系统名字,而是一个文本编辑器程序。因此,答案是A。

个人评价:较简单

11.在无向图中,所有顶点的度数之和等于(B)

A.图的边数
 

B.图的边数的两倍
 

C图的定点数
 

D.图的定点数的两倍

这是一道关于无向图顶点度数之和的问题。在无向图中,顶点的度数是指与该顶点相连的边的数量。为了解决这个问题,我们可以按照以下步骤进行推理:

‌理解无向图的度数‌:
在无向图中,每条边连接两个顶点。
因此,每条边对与其相连的两个顶点的度数都有贡献,即每条边贡献2度。
‌计算所有顶点的度数之和‌:
假设无向图有E条边,那么所有顶点的度数之和就是2E,因为每条边贡献2度。
‌对比选项‌:
A. 图的边数:这是E,不是所有顶点的度数之和。
B. 图的边数的两倍:这是2E,与所有顶点的度数之和相等。
C. 图的顶点数:这是V,与所有顶点的度数之和无关。
D. 图的顶点数的两倍:这是2V,与所有顶点的度数之和无关。

综上所述,所有顶点的度数之和等于图的边数的两倍。因此,答案是B。

个人评价:较简单

12.已知二叉树的前序遍历为[A,B,D,E,C,F,G],中序遍历为[D,B,E,A,F,C,G],求二叉树的后序遍历的结果是(A)
A. [D,E,B,F,G,C,A]
B. [D,E,B,F,G,A,C]
C. [D,B,E,F,G,C,A]
D. [D,E,B,F,G,A,C]

这是一道关于二叉树遍历的问题。首先,我们需要根据给定的前序遍历和中序遍历来重构二叉树,然后再进行后序遍历。

‌前序遍历的特点‌:

前序遍历的顺序是:根节点 -> 左子树 -> 右子树

‌中序遍历的特点‌:

中序遍历的顺序是:左子树 -> 根节点 -> 右子树

‌重构二叉树‌:

根据前序遍历,我们知道A是根节点。
在中序遍历中,A的左边是左子树(D,B,E),A的右边是右子树(F,C,G)。
接着,我们再看左子树的前序遍历(B,D,E),可以确定B是左子树的根,D和E是B的子节点。由于D在B的前面,所以D是B的左子节点,E是B的右子节点。
对于右子树(F,C,G),前序遍历是(C,F,G),所以C是右子树的根,F和G是C的子节点。由于F在C的前面,所以F是C的左子节点,G是C的右子节点。

‌二叉树的后序遍历‌:

后序遍历的顺序是:左子树 -> 右子树 -> 根节点
根据上面的分析,我们可以得出后序遍历的结果是:D,E,B,F,G,C,A。

所以,正确答案是 A:[D,E,B,F,G,C,A]。

个人评价:较简单

13.给定一个空栈,支持入栈和出栈操作。若入栈操作的元素依次是123456,其中1最先入栈,6最后入栈,下面哪种出栈顺序是不可能的(D)

A.654321

B.165432

C.246531

D.135246

这是一道关于栈操作顺序的题目。栈是一种后进先出(LIFO)的数据结构,这意味着最后插入的元素将是第一个被移除的元素。

首先,我们来分析给定的入栈序列:1,2,3,4,5,6。

接下来,我们将根据栈的后进先出特性,分析每个选项:

A. 654321

6最先出栈,符合栈的后进先出特性,因为6是最后一个入栈的。
接着是5、4、3、2、1依次出栈,这也符合栈的特性。
因此,A选项是可能的出栈顺序。

B. 165432

1最先出栈,虽然它是最先入栈的,但在某些特定操作下(如其他元素入栈后再出栈,给1留出栈空间),1是可以最先出栈的。
接着是6、5、4、3、2依次出栈,这也符合栈的特性。
因此,B选项也是可能的出栈顺序。

C. 246531

2最先出栈,在某些操作下(如3、4、5、6入栈后再出栈),2是可以出栈的。
接着是4、6、5、3、1依次出栈,这也符合栈的特性。
因此,C选项也是可能的出栈顺序。

D. 135246

1最先出栈,与B选项类似,这是可能的。
但接下来的3出栈后,5应该在2之前出栈就不可能了,因为2在5之前入栈,根据栈的后进先出特性,2应该在5之前出栈。
因此,D选项是不可能的出栈顺序。

综上所述,不可能的出栈顺序是D选项:135246。

个人评价:较简单

14.有5个男生和3个女生站成一排,规定3个女生必须相邻,问有多少种不同的排列方式?
A.4320 种
B.5040 种
C.3600 种
D.2880 种

本题考查排列组合。
首先,考虑3个女生必须相邻的情况。
可以把这3个女生看作是一个整体,记作X。
那么现在就有5个男生和1个“整体”X需要排列,即6个元素进行排列。
这6个元素的排列方式有6×5×4×3×2×1=720(种)。
然后,考虑3个女生之间的排列。
3个女生自己之间也有排列方式,即3×2×1=6(种)。
根据乘法原理,总的排列方式为:
720×6=4320(种)
所以,答案是A.4320种。

个人评价:中等

15.编译器的主要作用是什么(B)?

A.直接执行源代码
 

B.将源代码转换为机器代码
 

C.进行代码调试
 

D.管理程序运行时的内存

编译器的主要作用是将源代码转换为机器代码。因此,正确答案是 B.将源代码转换为机器代码。

解释:
A. 直接执行源代码 - 这是解释器的功能,而不是编译器的功能。
B. 将源代码转换为机器代码 - 这是编译器的主要功能,它将人类可读的源代码转换为计算机可以直接执行的机器代码。
C. 进行代码调试 - 这是调试器的功能,不是编译器的主要功能。
D. 管理程序运行时的内存 - 这是操作系统的功能,特别是在运行程序时,操作系统负责管理内存。

#include <iostream>using namespace std;bool isPrime( int n ){if ( n <= 1 ){return(false);}for ( int i = 2; i * i <= n; i++ ){if ( n % i == 0 ){return(false);}}return(true);}int countPrimes( int n ){int count = 0;for ( int i = 2; i <= n; i++ ){if ( isPrime( i ) ){count++;}}return(count);}int sumPrimes( int n ){int sum = 0;for ( int i = 2; i <= n; i++ ){if ( isPrime( i ) ){sum += i;}}return(sum);}int main(){int x;cin >> x;cout << countPrimes( x ) << " " << sumPrimes( x ) << endl;return(0);}

个人评价:较简单

16.当输入为“10”时,程序的第一个输出为“4”,第二个输出为“17”。(T)

当输入为“10”时,程序首先计算从2到10之间的素数个数,然后计算这些素数的和。

计算素数个数:

2是素数
3是素数
4不是素数
5是素数
6不是素数
7是素数
8不是素数
9不是素数
10不是素数

因此,从2到10之间有4个素数,第一个输出为“4”。

计算这些素数的和:

2 + 3 + 5 + 7 = 17

因此,第二个输出为“17”。

综上所述,当输入为“10”时,程序的第一个输出为“4”,第二个输出为“17”。这个说法是正确的。

17.若将 isPrime(i)函数种的条件改为 i<=n/2,输入“20”时,countPrimes(20)的输出将变为“6”(F)

当我们修改 isPrime(int n) 函数中的循环条件从 i * i <= n 改为 i <= n/2,这实际上会改变素数检测的逻辑,可能导致某些数被错误地判断为非素数。

具体来说,对于任何大于1的整数n,如果它有一个因子大于其平方根,那么它必定还有一个小于或等于其平方根的因子。因此,原条件 i * i <= n 是有效的,因为它确保了只需要检查到n的平方根即可。

然而,新条件 i <= n/2 可能会漏掉一些大于n/2且小于或等于n的平方根的因子,从而导致错误的判断。

现在,我们来考虑输入为“20”时的情况,并计算 countPrimes(20) 的输出:

2, 3, 5, 7, 11, 13, 17, 19 都是素数。

使用原条件 i * i <= n,所有这些数都会被正确地识别为素数。

但是,使用新条件 i <= n/2,对于某些数(尤其是接近n的数),可能会漏掉它们的因子,从而错误地将它们判断为素数或非素数。

实际上,对于20以内的素数,使用新条件仍然可以正确地识别它们,因为它们的因子都小于或等于它们的一半。但是,当n变得更大时,这种方法可能会失效。

在这个特定例子中(n=20),输出仍然是8,因为从2到20之间的素数有8个(2, 3, 5, 7, 11, 13, 17, 19)。所以,说输出将变为“6”是不正确的。实际上,输出仍然是“8”。

18.sumPrimes 函数计算的是从2到n之间的所有素数之和(T)

是的,sumPrimes 函数计算的是从2到n之间的所有素数之和。这个函数首先通过调用 isPrime 函数检查每个数是否为素数,如果是,则将其加到累加器 sum 中。最后,函数返回累加器 sum 的值,即2到n之间所有素数的和。因此,对于输入n,sumPrimes 函数确实计算了从2到n之间的所有素数之和。

19.当输入为“50”时,sumPrimes(50)的输出为(B)

A.1060
 

B.328
 

C.381
 

D.275

当输入为“50”时,sumPrimes(50) 函数会计算从2到50之间所有素数的和。

我们可以列出2到50之间的所有素数,并将它们相加:

2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 = 328

因此,sumPrimes(50) 的输出是 328,选项 B 是正确的。

20.如果将for(int i=2;i*i<=n;i++)改为 for(int i=2;i<=n;i++),输入"10”时,程序的输出()
A.将不能正确计算10以内素数个数及其和

B.仍然输出"4"和"17
 

C.输出"3"和10
 

D.输出结果不变,但余小宁时间更短

如果将 for(int i=2; i*i<=n; i++) 改为 for(int i=2; i<=n; i++),在输入为“10”时,程序的输出将受到显著影响。

原循环 for(int i=2; i*i<=n; i++) 是一种有效的素数检测优化,它确保了我们只检查到每个数的平方根。这是因为,如果一个数 n 是合数,它必定有一个因子不大于其平方根。

然而,新的循环 for(int i=2; i<=n; i++) 会检查从2到n的每个数,这大大增加了不必要的迭代次数,并且会导致程序效率降低。

对于输入“10”,正确的素数有2、3、5和7,它们的和是17。但是,如果使用新的循环条件,虽然最终仍然会找到这些素数并计算它们的和(因为新条件并没有排除任何实际的素数检测,只是增加了不必要的迭代),但程序的运行时间会更长。

因此,输出仍然是“4”和“17”,但程序运行时间会更长。所以答案是 ‌B.仍然输出"4"和"17"‌,但请注意,运行时间会变长,而不是变短。选项D中的“输出结果不变,但运行时间更短”是不正确的。

#include <iostream>#include <vector>using namespace std;int compute( vector<int> &cost ){int n = cost.size();vector<int> dp( n + 1, 0 );dp[1] = cost[0];for ( int i = 2; i <= n; i++ ){dp[i] = min( dp[i - 1], dp[i - 2] ) + cost[i - 1];}return(min( dp[n], dp[n - 1] ) );}int main(){int n;cin >> n;vector<int> cost( n );for ( int i = 0; i < n; i++ ){cin >> cost[i];}cout << compute( cost ) << endl;return(0);}

个人评价:困难

21.当输入的 cost 数组为{10,15,20}时,程序的输出为 15()

分析给定的代码,我们可以看到这是一个动态规划问题,用于解决一个特定的问题:给定一个整数数组cost,代表一系列任务的费用,你可以选择完成其中的一些任务,但你不能连续完成两个任务。目标是选择任务以最小化总费用。

代码逻辑如下:

创建一个大小为n+1的动态规划数组dp,其中n是cost数组的大小。dp[i]将存储考虑到第i个任务时的最小费用。

初始化dp为cost,因为没有前一个任务可以与第一个任务冲突。

对于i从2到n,dp[i]的值是dp[i-1](不选择当前任务)和dp[i-2] + cost[i-1](选择当前任务,因此必须跳过前一个任务)中的较小值。

最后,返回dp[n]和dp[n-1]中的较小值,因为最后一个任务可能被选择或不被选择。

现在,对于输入数组{10, 15, 20}:

dp = 10(只有第一个任务时,费用是10)
dp = min(dp, 0 + 15) = 15(选择第二个任务,因为不选择它的费用是dp,即10,而选择它的费用是15)
dp = min(dp, dp + 20) = 20(不选择第三个任务的费用是dp,即15,而选择它的费用是30,所以选择不执行它)

因此,最小费用是min(dp, dp) = min(20, 15) = 15。

所以,程序的输出确实是15,给定的陈述是正确的。

22.如果将 dp[i-1]改为 dp[i-3],程序可能会产生编译错误(F)

确实,如果将代码中的 dp[i-1] 改为 dp[i-3],程序可能会产生编译错误,但这主要取决于 i 的值以及数组 dp 的大小。

在原始代码中,dp[i] 是通过 min(dp[i - 1], dp[i - 2]) + cost[i - 1] 来计算的。这里,dp[i - 1] 和 dp[i - 2] 都是有效的数组索引,因为 i 的取值范围是从 2 到 n(包含)。

如果将 dp[i-1] 改为 dp[i-3],那么当 i 等于 2 或 3 时,dp[i-3] 将尝试访问 dp[-1] 或 dp,这是越界的,因为 dp 数组的有效索引是从 0 到 n。

此外,即使 i 大于 3,将 dp[i-1] 改为 dp[i-3] 也会改变程序的逻辑,这可能不是你想要的结果,因为这将不再正确地处理任务选择的问题。

因此,如果你尝试编译并运行修改后的代码,你可能会遇到运行时错误,如访问越界,而不是编译错误。编译错误通常是由于语法问题或类型不匹配等问题导致的,而运行时错误是由于程序在执行时尝试执行非法操作(如访问越界的数组元素)导致的。

总之,将 dp[i-1] 改为 dp[i-3] 是一个逻辑错误,它可能会破坏程序的正确性,并可能导致运行时错误。

23.(2分)程序总是输出 cost 数组种的最小的元素(F)

这个说法是不正确的。程序并不是总是输出cost数组中的最小元素。程序的目的是计算在不连续选择任务的情况下可以达到的最小费用。它通过动态规划来实现这一点,考虑每个任务是否执行,并基于之前任务的选择来计算最小费用。

具体来说,对于每个任务i,程序计算两种情况的较小值:

不选择当前任务i,费用保持为dp[i-1]。
选择当前任务i,但必须跳过前一个任务,因此费用是dp[i-2] + cost[i-1]。

最终,程序返回dp[n]和dp[n-1]中的较小值,这表示考虑到所有任务后的最小费用。这个费用并不是简单地cost数组中的最小元素,而是基于任务选择策略计算出来的。

因此,说程序总是输出cost数组中的最小元素是不正确的。

24.当输入的 cost 数组为(1,100,1,1,1,100,1,1,100,1}时,程序的输出为()。
A."6”
B.“7"
C."8”
D."9"

对于输入的cost数组{1, 100, 1, 1, 1, 100, 1, 1, 100, 1},我们可以按照程序的逻辑来计算最小费用。

初始化dp数组,大小为n+1,其中n是cost数组的大小。
dp和dp没有实际用途,只是为了方便计算而设置的。
dp = cost,因为只有一个任务时,费用就是该任务的成本。
从i = 3开始,计算dp[i],直到i = n + 1。

按照这个程序逻辑,我们可以逐步计算dp数组的值:

dp = 1
dp = min(dp, dp + 100) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 100) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 100) = 1
dp = min(dp, dp + 1) = 1

最后,返回min(dp, dp) = 1。

但是,这里有一个逻辑错误。实际上,在原始的程序代码中,dp[i]的计算是基于min(dp[i-1], dp[i-2] + cost[i-1])。因此,我们需要重新计算:

dp = 1
dp = min(dp, 0 + 100) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 100) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 1) = 1
dp = min(dp, dp + 100) = 1
dp = min(dp, dp + 1) = 1

最终,min(dp, dp) = 1。

所以,对于输入的cost数组{1, 100, 1, 1, 1, 100, 1, 1, 100, 1},程序的输出是1。但是,这个答案并不在提供的选项中。看起来选项可能给错了,或者题目可能有误。正确的输出应该是1,而不是6、7、8或9。

25.(4 分)如果输入的 cost 数组为{10,15,30,5,5,10,20},程序的输出为()
A"25"
B."30"
C."35”
D.“40”

根据给定的程序,它实现了一个动态规划算法来计算一个特定问题的最优解。这个问题通常被称为“打家劫舍”问题,其中一个小偷想要抢劫一排房屋,但是由于某些原因,他不能抢劫相邻的房屋。因此,他必须选择抢劫哪些房屋以获得最大收益。

在这个问题中,cost 数组表示每个房屋中的金额。动态规划数组 dp 用于存储到每个房屋为止可以获得的最大金额,但是必须遵守不能抢劫相邻房屋的规则。

对于输入的 cost 数组 {10, 15, 30, 5, 5, 10, 20},程序将计算并返回可以获得的最大金额。

按照动态规划的逻辑:

dp = cost = 10
dp = min(dp, dp) + cost = min(10, 0) + 15 = 15 + 15 = 30
dp = min(dp, dp) + cost = min(30, 10) + 30 = 10 + 30 = 40
dp = min(dp, dp) + cost = min(40, 30) + 5 = 30 + 5 = 35
dp = min(dp, dp) + cost = min(35, 40) + 5 = 35 + 5 = 40
dp = min(dp, dp) + cost = min(40, 35) + 10 = 35 + 10 = 45
dp = min(dp, dp) + cost = min(45, 40) + 20 = 40 + 20 = 60

最终,程序将返回 min(dp[n], dp[n-1]),即 min(60, 45) = 45,但这个结果并不在选项中。然而,这里有一个错误:实际上,我们应该返回 dp[n],因为 dp[n] 存储了考虑到所有房屋时的最大金额,而 dp[n-1] 是考虑到前 n-1 个房屋时的最大金额。所以正确答案应该是 dp = 60,但这个值也不在选项中。

看起来选项可能是基于一个不同的理解或错误地计算了结果。按照程序的逻辑和给定的输入,正确的输出应该是 60,而不是任何给出的选项。如果必须从给定的选项中选择,那么可能是一个错误或遗漏在问题陈述中。

26.若将代码中的 min(dp[i-1],dp[i-2])+cost[i-1]修改为 dp[i-1]+cost[i-2],输入 cost 数组为{5,10,15}时,程序的输出为()
A."10”
B."15"
C."20”
D.“25"

若将代码中的 min(dp[i-1], dp[i-2]) + cost[i-1] 修改为 dp[i-1] + cost[i-2],则动态规划的逻辑将发生变化。原逻辑是考虑抢劫当前房屋和不抢劫当前房屋两种情况下的最大收益,而新逻辑则变成了考虑前一个房屋的最大收益加上当前房屋前一个房屋的金额。

对于输入的 cost 数组 {5, 10, 15},按照新的逻辑:

dp = cost = 5
dp = dp + cost = 5 + 5 = 10 (这里使用了修改后的逻辑,但注意这里实际上是一个边界情况,因为通常 i 从 2 开始时,cost[i-2] 是有效的,不过在这个特定情况下,由于 i=2,cost[i-2] 恰好是 cost)
dp = dp + cost = 10 + 10 = 20

因此,程序的输出将是 dp 的值,即 20。

所以答案是 C. "20"。

27.当输入为“23"时,customFunction(2,3)的返回值为“64”。()

首先,我们来分析customFunction函数的逻辑。这个函数是一个递归函数,它接收两个整数参数a和b,并返回它们的某种组合结果。

函数逻辑如下:

如果b等于0,函数返回a。
否则,函数返回a加上customFunction(a, b-1)的结果。

现在,我们来计算customFunction(2, 3)的值:

customFunction(2, 3)会返回2 + customFunction(2, 2)。
customFunction(2, 2)会返回2 + customFunction(2, 1)。
customFunction(2, 1)会返回2 + customFunction(2, 0)。
customFunction(2, 0)会返回2(因为b等于0)。

将这些值加起来,我们得到:

customFunction(2, 3) = 2 + (2 + (2 + 2)) = 2 + 2 + 2 + 2 = 8

所以,customFunction(2, 3)的返回值是8,而不是64。

在main函数中,这个返回值被平方后输出。因此,输出将是82 = 64,但这并不改变customFunction(2, 3)返回值为8的事实。

因此,陈述“当输入为‘23’时,customFunction(2,3)的返回值为‘64’”是不正确的。正确的返回值是8,其平方是64,但这两个数值指的是不同的东西。

28.当b为负数时,customFunction(a,b)会陷入无限递归。()

是的,当b为负数时,customFunction(a, b)会陷入无限递归。这是因为函数在b不等于0时会一直递归调用自身,并且每次调用都会将b减1。如果b是一个负数,那么b减1永远不会等于0,因此递归调用将永远不会停止。

这是customFunction函数的一个潜在问题,因为它没有对b的负值进行处理。在实际编程中,我们应该总是检查函数的输入值,并确保它们在合理的范围内,以避免无限递归和其他潜在的问题。

29.当b的值越大,程序的运行时间越长。()

是的,当b的值越大,程序的运行时间越长。这是因为customFunction是一个递归函数,它的执行时间与递归的深度直接相关。当b的值增加时,递归的深度也会增加,因为函数需要执行更多的递归调用才能到达基准情况(即b等于0)。

每次递归调用都需要消耗一定的时间,包括函数调用本身的时间、参数传递的时间以及递归调用返回的时间。因此,当递归深度增加时,程序的运行时间也会相应地增加。

在实际应用中,如果递归函数的递归深度过大,可能会导致程序运行缓慢,甚至引发栈溢出错误。因此,在设计递归函数时,需要特别注意递归深度的控制,以避免潜在的性能问题和错误。

30,当输入为“54”时,customFunction(5,4)的返回值为()
A.5
B.25
C.250
D.625

当输入为“54”时,我们需要计算customFunction(5,4)的返回值。

根据customFunction的定义,我们知道:

如果b等于0,函数返回a。
否则,函数返回a加上customFunction(a, b-1)的结果。

现在,我们来计算customFunction(5,4)的值:

customFunction(5,4)会返回5 + customFunction(5,3)。
customFunction(5,3)会返回5 + customFunction(5,2)。
customFunction(5,2)会返回5 + customFunction(5,1)。
customFunction(5,1)会返回5 + customFunction(5,0)。
customFunction(5,0)会返回5(因为b等于0)。

将这些值加起来,我们得到:

customFunction(5,4) = 5 + (5 + (5 + (5 + 5))) = 5 + 5 + 5 + 5 + 5 = 25

所以,customFunction(5,4)的返回值是25。

答案是B. 25。

31.如果输入x=3和y=3,则程序的最终输出为()

A."27”

B."81"

C."144”

D."256

在这个问题中,我们有一个customFunction函数,它递归地计算a的b次重复加法,而不是乘法。这意味着customFunction(3, 3)会计算3 + 3 + 3,结果是9。

然后,在main函数中,我们计算result的平方,即pow(result, 2)。

对于输入x=3和y=3:

customFunction(3, 3)计算为3 + 3 + 3 = 9。
pow(result, 2)计算为pow(9, 2) = 81。

因此,程序的最终输出为81。

答案是B."81"。

32.(4分)若将 customFunction 所数改为“returna+ customFunction(a-1,b-1);并输入“3 3”,则程序的最终输出为()。
A.9
B.16
C.25
D.36

根据修改后的customFunction函数定义:

int customFunction(int a, int b) {
    if (b == 0) {
        return a;
    }
    return a + customFunction(a - 1, b - 1);
}

这个函数现在执行的是对ab同时进行递减的递归操作,并将a的值累加起来。对于输入x=3y=3,函数的执行过程如下:

  1. customFunction(3, 3) 返回 3 + customFunction(2, 2)
  2. customFunction(2, 2) 返回 2 + customFunction(1, 1)
  3. customFunction(1, 1) 返回 1 + customFunction(0, 0)
  4. customFunction(0, 0) 返回 0(因为b == 0

将这些值加起来:

3 + (2 + (1 + 0)) = 6

因此,customFunction(3, 3)的结果是6

然后,在main函数中,我们计算result的平方。

所以,程序的最终输出为36

答案是D.36

(1)(判断平方数)问题:给定一个正整数 n,判断这个数 是不是完全平方数,即存在一个正整数x使得x的平方等于n试补全程序

#include <iostream>#include <vector>using namespace std;bool isSquare( int num ){int i = (1);int bound = (2);for (; i <= bound; ++i ){if ( (3) ){return(4);}}return(5);}int main(){int n;cin >> n;if ( isSquare( n ) ){cout << n << " is a Square number" << endl;}else{cout << n << " is not a Square number" << endl;}}

33.1处应填
A.1

B. 2

C. 3

D.4

isSquare函数中,我们需要确定一个数num是否为平方数。为此,我们可以从1开始,逐个尝试每个整数,直到该整数的平方大于num。如果在这个过程中我们找到了一个整数,其平方等于num,则num是一个平方数。

  1. (1)处应填A. 1,因为我们要从1开始尝试每个整数。

接下来,我们需要确定循环的边界。由于我们只需要检查到sqrt(num)num的平方根)即可,因为任何大于sqrt(num)的整数的平方都会大于num

34.2处应填()
A.(int) floor(sqrt(num)-1)

B.(int)floor(sqrt(num))

C. floor(sqrt(num/2))-1

D. floor(sqrt(num/2))

(2)处应填与sqrt(num)相关的表达式。但在这里,由于我们使用的是整数,并且要避免使用浮点数运算,我们可以简单地设置边界为num本身,因为当我们到达num时,任何更大的数的平方都会超过num。实际上,更精确的做法是设置边界为num / 2 + 1(对于非零的num),因为平方数的平方根肯定不会超过num / 2(对于num > 1的情况)。但考虑到简洁性和避免浮点数,我们可以使用num作为边界,并在循环中进行适当的检查。

然而,为了与原始答案保持一致并简化逻辑,我们可以暂时接受使用num作为边界,尽管这不是最优的。

35.3处应填

A.num=2*i

B.num== 2*i

C. num=i*i

D.num==i*i

isSquare函数中,(3)处是判断条件,用于检查当前整数i的平方是否等于输入的数num。在C++中,比较两个数是否相等使用双等号==

因此,(3)处应填D. num==i*i

完整的isSquare函数如下:

bool isSquare(int num) {
    int i = 1;
    int bound = (int)floor(sqrt(num));
    for (; i <= bound; ++i) {
        if (num == i * i) {
            return true;
        }
    }
    return false;
}

这个函数从1开始,逐个尝试每个整数,直到其平方大于num。如果在这个过程中找到了一个整数,其平方等于num,则函数返回true,表示num是一个平方数。如果循环结束都没有找到这样的整数,则函数返回false,表示num不是一个平方数。

36.4处应填
A. num= 2*i

B. num==2*i

C. true

D. false

isSquare函数中,(4)处是当找到一个整数i,使得i * i == num时应该返回的值。由于这表示num是一个平方数,所以函数应该返回true

因此,(4)处应填C. true

完整的isSquare函数如下:

#include <cmath> // 引入cmath库以使用sqrt和floor函数

bool isSquare(int num) {
    int i = 1;
    int bound = (int)floor(sqrt(num));
    for (; i <= bound; ++i) {
        if (num == i * i) {
            return true;
        }
    }
    return false;
}

37.5处应填

A. num= i*i
 

B. num!=2*l
 

C. true
 

D. False

在isSquare函数中,(5)处是当循环结束时应该返回的值。由于循环结束意味着没有找到任何整数i,使得i * i == num,所以num不是一个平方数,函数应该返回false。

因此,(5)处应填D. false。完整的isSquare函数如下:

#include <cmath> // 引入cmath库以使用sqrt和floor函数

bool isSquare(int num) {
int i = 1;
int bound = (int)floor(sqrt(num));
for (; i <= bound; ++i) {
if (num == i * i) {
return true;
}
}
return false;
}

这个函数会检查num是否是一个平方数,如果找到一个整数i使得i * i == num,则返回true;否则,返回false。

(2)(汉诺塔问题)给定三根柱子,分别标记为A、B和C。初始状态下,柱子A上有若干个圆盘,这些圆盘从上到下按从小到大的顺序排列。任务是将这些圆盘全部移到柱子c上,且必须保持原有顺序不变。在移动过程中,需要遵守以不规则:
1.只能从一根柱子的顶部取出圆盘,并将其放入另一根柱子的顶部
2.每次只能移动一个圆盘
3.小圆盘必须始终在大圆盘之上。

#include <bits/stdc++.h>using namespace std;void move( char src, char tgt ){cout << "从柱子" << src << "挪到柱子上" << tgt << endl;}void dfs( int i, char src, char tmp, char tgt ){if ( i == (1) ){move( (2) );return;}dfs( i - 1, (3) );move( src, tgt );dfs( (5), (4) );}int main(){int n;cin >> n;dfs( n, 'A', 'B', 'C' );}

【分析】汉诺塔问题的递归解法。每次通过空的柱子,将其转化为规模小1的子问题。理解代码的关键在于理解src,tmp,tgt三个变量。代表通过空柱子tmp中转,将src的最下面一个转移到tgt。转换完后,tmp上为规模小1的子问题,src变为空柱子,接下来需要将tmp上的借助src转移到tgt上,tmp再变为空......

38.1处应填
A.0
 

B.1

C.2

D.3

39.2处应填
A. src,tmp

B. src,tgt

C. tmp,tgt


D.tgt.tmp

40.3处应填
A. src,tmp,tgt

B. src, tgt, tmp

C. tgt, tmp, src

D. tgt, src, tmp

41.4处应填
A. src, tmp. tgt

B. tmp,src, tgt

C. src, tgt,tmp

D. tgt,src,tmp

42.⑤处应填
A.0
B.1
C.i-1
D.i

在汉诺塔问题的深度优先搜索(DFS)解法中,递归的基准情况是当只有一个盘子需要移动时。此时,我们直接将盘子从源柱子移动到目标柱子,而不需要借助临时柱子。因此,if语句中的条件应该是检查是否只有一个盘子需要移动。

由于盘子数量in开始递减,当i等于1时,表示只有一个盘子需要移动。所以,1处应填B.1

完整的dfs函数如下:

void dfs(int i, char src, char tmp, char tgt) {
    if (i == 1) {
        move(src, tgt);
        return;
    }
    dfs(i - 1, src, tgt, tmp);
    move(src, tgt);
    dfs(i - 1, tmp, src, tgt);
}

这里,dfs函数递归地将i-1个盘子从源柱子src移动到临时柱子tmp,然后将剩下的一个盘子从源柱子src移动到目标柱子tgt,最后再将i-1个盘子从临时柱子tmp移动到目标柱子tgt

【总结】与前几年相比,组的题目难度有所下降。着重考察一些基础概念的记忆和理解以及选手的细心程度。同时对经典算法的考察增多。

结束了!

对了,忘说了一句话:

要想c++成绩好,就来jiabei小课堂

还有,点我主页,看我简介,别给那三个人点赞就完了

 这篇文章的背景故事:我的那些朋友去给另一个朋友过生日聚会,现在刚刚走回来。那你们知道我为啥不去吗给你们看张珍贵无比的图片:

 

当然,不止这两张。至于原因,我要回来赶(肝)(干)解析(哭脸)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值