【题目来源】
AcWing:1126. 最小花费 - AcWing题库
【题目描述】
在 n n n 个人中,某些人的银行账号之间可以互相转账。这些人之间转账的手续费各不相同。给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问 A A A 最少需要多少钱使得转账后 B B B 收到 100 100 100 元。
【输入】
第一行输入两个正整数 n , m n,m n,m,分别表示总人数和可以互相转账的人的对数。
以下 m m m 行每行输入三个正整数 x , y , z x,y,z x,y,z,表示标号为 x x x 的人和标号为 y y y 的人之间互相转账需要扣除 z % z\% z% 的手续费 ( z < 100 ) (z<100) (z<100)。
最后一行输入两个正整数 A , B A,B A,B。数据保证 A A A 与 B B B 之间可以直接或间接地转账。
【输出】
输出 A A A 使得 B B B 到账 100 100 100 元最少需要的总费用。精确到小数点后 8 8 8 位。
【输入样例】
3 3
1 2 1
2 3 2
1 3 3
1 3
【输出样例】
103.07153164
【解题思路】
【算法标签】
《洛谷 P1576 最小花费》 #图论# #最短路#
【代码详解】
#include <bits/stdc++.h> // 包含所有标准库头文件
using namespace std;
const int N = 2010, INF = 1e9; // 定义常量:N为节点数量上限,INF为无穷大
int n, m, A, B; // n:节点数量;m:边的数量;A:起点;B:终点
double g[N][N]; // 图的邻接矩阵,g[i][j]表示节点i到节点j的权重(浮点数)
double dist[N]; // dist[i]:起点A到节点i的最大权重路径
bool st[N]; // st[i]:节点i的距离是否已确定
// Dijkstra算法实现,s为起点
double dijkstra(int s)
{
dist[s] = 1; // 起点到自身的权重为1
for (int i = 1; i <= n; i++) { // 遍历所有节点
int t = -1; // 用于存储当前未确定距离的节点中权重最大的节点
double maxd = -INF; // 用于存储当前未确定距离的节点中的最大权重
// 找到未确定距离的节点中权重最大的节点
for (int j = 1; j <= n; j++) {
if (!st[j] && dist[j] > maxd) {
t = j;
maxd = dist[j];
}
}
if (t == -1) return -1; // 如果没有找到,说明图不连通,返回-1
st[t] = true; // 标记节点t的距离已确定
// 更新其他节点的距离
for (int j = 1; j <= n; j++) {
dist[j] = max(dist[j], dist[t] * g[t][j]); // 更新节点j的权重
}
}
return dist[B]; // 返回起点A到终点B的最大权重
}
int main()
{
cin >> n >> m; // 输入节点数量n,边的数量m
// 初始化邻接矩阵
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
g[i][j] = 0; // 初始化为0,表示没有边
// 输入m条边
while (m--) {
int a, b, c;
cin >> a >> b >> c; // 输入边的起点a,终点b,扣除的百分比c
double z = (100.0 - c) / 100; // 计算权重(1 - c%)
g[a][b] = max(g[a][b], z); // 更新a到b的权重,保留最大值
g[b][a] = g[a][b]; // 无向图,同时更新b到a的权重
if (a == b) g[a][b] = 1; // 如果起点和终点相同,权重为1
}
cin >> A >> B; // 输入起点A和终点B
double ans = dijkstra(A); // 调用Dijkstra算法计算最大权重路径
printf("%.8lf", 100 / ans); // 输出结果,保留8位小数
return 0; // 程序结束
}
【运行结果】
3 3
1 2 1
2 3 2
1 3 3
1 3