CSP-J备考冲刺必刷题(C++) | AcWing 1126 最小花费

【题目来源】

AcWing:1126. 最小花费 - AcWing题库

【题目描述】

n n n 个人中,某些人的银行账号之间可以互相转账。这些人之间转账的手续费各不相同。给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问 A A A 最少需要多少钱使得转账后 B B B 收到 100 100 100 元。

【输入】

第一行输入两个正整数 n , m n,m n,m,分别表示总人数和可以互相转账的人的对数。

以下 m m m 行每行输入三个正整数 x , y , z x,y,z x,y,z,表示标号为 x x x 的人和标号为 y y y 的人之间互相转账需要扣除 z % z\% z% 的手续费 ( z < 100 ) (z<100) (z<100)

最后一行输入两个正整数 A , B A,B A,B。数据保证 A A A B B B 之间可以直接或间接地转账。

【输出】

输出 A A A 使得 B B B 到账 100 100 100 元最少需要的总费用。精确到小数点后 8 8 8 位。

【输入样例】

3 3                                 
1 2 1
2 3 2
1 3 3
1 3

【输出样例】

103.07153164

【解题思路】

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

【算法标签】

《洛谷 P1576 最小花费》 #图论# #最短路#

【代码详解】

#include <bits/stdc++.h>  // 包含所有标准库头文件
using namespace std;

const int N = 2010, INF = 1e9;  // 定义常量:N为节点数量上限,INF为无穷大
int n, m, A, B;  // n:节点数量;m:边的数量;A:起点;B:终点
double g[N][N];  // 图的邻接矩阵,g[i][j]表示节点i到节点j的权重(浮点数)
double dist[N];  // dist[i]:起点A到节点i的最大权重路径
bool st[N];  // st[i]:节点i的距离是否已确定

// Dijkstra算法实现,s为起点
double dijkstra(int s)
{
    dist[s] = 1;  // 起点到自身的权重为1
    for (int i = 1; i <= n; i++) {  // 遍历所有节点
        int t = -1;  // 用于存储当前未确定距离的节点中权重最大的节点
        double maxd = -INF;  // 用于存储当前未确定距离的节点中的最大权重

        // 找到未确定距离的节点中权重最大的节点
        for (int j = 1; j <= n; j++) {
            if (!st[j] && dist[j] > maxd) {
                t = j;
                maxd = dist[j];
            }
        }

        if (t == -1) return -1;  // 如果没有找到,说明图不连通,返回-1
        st[t] = true;  // 标记节点t的距离已确定

        // 更新其他节点的距离
        for (int j = 1; j <= n; j++) {
            dist[j] = max(dist[j], dist[t] * g[t][j]);  // 更新节点j的权重
        }
    }
    return dist[B];  // 返回起点A到终点B的最大权重
}

int main()
{
    cin >> n >> m;  // 输入节点数量n,边的数量m

    // 初始化邻接矩阵
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= n; j++)
            g[i][j] = 0;  // 初始化为0,表示没有边

    // 输入m条边
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;  // 输入边的起点a,终点b,扣除的百分比c
        double z = (100.0 - c) / 100;  // 计算权重(1 - c%)
        g[a][b] = max(g[a][b], z);  // 更新a到b的权重,保留最大值
        g[b][a] = g[a][b];  // 无向图,同时更新b到a的权重
        if (a == b) g[a][b] = 1;  // 如果起点和终点相同,权重为1
    }

    cin >> A >> B;  // 输入起点A和终点B

    double ans = dijkstra(A);  // 调用Dijkstra算法计算最大权重路径
    printf("%.8lf", 100 / ans);  // 输出结果,保留8位小数

    return 0;  // 程序结束
}

【运行结果】

3 3                                 
1 2 1
2 3 2
1 3 3
1 3
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值