本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:4247. 糖果 - AcWing题库
【题目描述】
有 n n n 个小朋友,编号 1 ∼ n 1\sim n 1∼n。
老师要给他们发糖果。
小朋友们的攀比心都很重,现在给出 m m m 条攀比信息。
每条信息包含三个整数 a , b , c a, b, c a,b,c,含义是小朋友 a a a 认为小朋友 b b b 的糖果数量最多只可以比他多 c c c 个,否则他就生气。
老师在发糖果时,必须照顾所有小朋友的情绪,让他们都感到满意。
请问,小朋友 n n n 最多比小朋友 1 1 1 多分到多少个糖果。
【输入】
第一行包含两个整数 n , m n,m n,m。
接下来 m m m 行,每行包含三个整数 a , b , c a,b,c a,b,c,表示一条攀比信息。
【输出】
一个整数,表示小朋友 n n n 最多比小朋友 1 1 1 多分到的糖果数量的最大可能值。
【输入样例】
2 2
1 2 5
2 1 4
【输出样例】
5
【算法标签】
《AcWing 4247 糖果》 #Dijkstra#
【代码详解】
#include <bits/stdc++.h> // 包含所有标准库头文件
using namespace std;
const int N = 30010, M = 200010, INF = 1e9; // 定义常量:N为节点数量上限,M为边的数量上限,INF为无穷大
// 图的邻接表存储
int h[N], w[M], e[M], ne[M], idx; // h[a]:以a为起点的边的链表头;e[idx]:边的终点;w[idx]:边的权重;ne[idx]:下一条边的地址;idx:当前边的地址
typedef pair<int, int> Node; // 定义Node类型,存储距离和节点编号
priority_queue<Node, vector<Node>, greater<Node>> heap; // 小根堆,用于Dijkstra算法
int n, m; // n:节点数量;m:边的数量
int dist[N]; // dist[i]:源点到节点i的最短距离
bool st[N]; // st[i]:节点i的距离是否已确定
// 添加一条边:起点a,终点b,权重c
void add(int a, int b, int c)
{
e[idx] = b, w[idx] = c; // 记录边的终点和权重
ne[idx] = h[a], h[a] = idx++; // 将边插入到a的邻接表中
}
// Dijkstra算法实现,s为源点
int dijkstra(int s)
{
fill(dist, dist + N, INF); // 初始化所有节点的距离为无穷大
dist[s] = 0; // 源点到自身的距离为0
heap.push({0, s}); // 将源点加入堆
while (!heap.empty()) { // 当堆不为空时
Node nd = heap.top(); // 取出堆顶元素
heap.pop();
int t = nd.second, distance = nd.first; // t:当前节点;distance:源点到t的距离
if (st[t]) continue; // 如果t的距离已确定,跳过
st[t] = true; // 标记t的距离已确定
// 遍历t的所有邻接边
for (int i = h[t]; i != -1; i = ne[i]) {
int j = e[i]; // 边的终点j
if (dist[j] > distance + w[i]) { // 如果可以通过t松弛j的距离
dist[j] = distance + w[i]; // 更新j的距离
heap.push({dist[j], j}); // 将j加入堆
}
}
}
if (dist[n] == INF) return -1; // 如果终点n不可达,返回-1
else return dist[n]; // 否则返回源点到n的最短距离
}
int main()
{
cin >> n >> m; // 输入节点数量n,边的数量m
memset(h, -1, sizeof(h)); // 初始化邻接表,-1表示链表结束
// 输入m条边
while (m--) {
int a, b, c;
cin >> a >> b >> c; // 输入边的起点a,终点b,权重c
add(a, b, c); // 添加边a->b
}
cout << dijkstra(1) << endl; // 调用Dijkstra算法,输出源点1到终点n的最短距离
return 0; // 程序结束
}
【运行结果】
2 2
1 2 5
2 1 4
5