CSP-J备考冲刺必刷题(C++) | AcWing 4247 糖果

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:4247. 糖果 - AcWing题库

【题目描述】

n n n 个小朋友,编号 1 ∼ n 1\sim n 1n

老师要给他们发糖果。

小朋友们的攀比心都很重,现在给出 m m m 条攀比信息。

每条信息包含三个整数 a , b , c a, b, c a,b,c,含义是小朋友 a a a 认为小朋友 b b b 的糖果数量最多只可以比他多 c c c 个,否则他就生气。

老师在发糖果时,必须照顾所有小朋友的情绪,让他们都感到满意。

请问,小朋友 n n n 最多比小朋友 1 1 1 多分到多少个糖果。

【输入】

第一行包含两个整数 n , m n,m n,m

接下来 m m m 行,每行包含三个整数 a , b , c a,b,c a,b,c,表示一条攀比信息。

【输出】

一个整数,表示小朋友 n n n 最多比小朋友 1 1 1 多分到的糖果数量的最大可能值。

【输入样例】

2 2
1 2 5
2 1 4

【输出样例】

5

【算法标签】

《AcWing 4247 糖果》 #Dijkstra#

【代码详解】

#include <bits/stdc++.h>  // 包含所有标准库头文件
using namespace std;

const int N = 30010, M = 200010, INF = 1e9;  // 定义常量:N为节点数量上限,M为边的数量上限,INF为无穷大

// 图的邻接表存储
int h[N], w[M], e[M], ne[M], idx;  // h[a]:以a为起点的边的链表头;e[idx]:边的终点;w[idx]:边的权重;ne[idx]:下一条边的地址;idx:当前边的地址
typedef pair<int, int> Node;  // 定义Node类型,存储距离和节点编号
priority_queue<Node, vector<Node>, greater<Node>> heap;  // 小根堆,用于Dijkstra算法

int n, m;  // n:节点数量;m:边的数量
int dist[N];  // dist[i]:源点到节点i的最短距离
bool st[N];  // st[i]:节点i的距离是否已确定

// 添加一条边:起点a,终点b,权重c
void add(int a, int b, int c)
{
    e[idx] = b, w[idx] = c;  // 记录边的终点和权重
    ne[idx] = h[a], h[a] = idx++;  // 将边插入到a的邻接表中
}

// Dijkstra算法实现,s为源点
int dijkstra(int s)
{
    fill(dist, dist + N, INF);  // 初始化所有节点的距离为无穷大
    dist[s] = 0;  // 源点到自身的距离为0
    heap.push({0, s});  // 将源点加入堆

    while (!heap.empty()) {  // 当堆不为空时
        Node nd = heap.top();  // 取出堆顶元素
        heap.pop();
        int t = nd.second, distance = nd.first;  // t:当前节点;distance:源点到t的距离

        if (st[t]) continue;  // 如果t的距离已确定,跳过
        st[t] = true;  // 标记t的距离已确定

        // 遍历t的所有邻接边
        for (int i = h[t]; i != -1; i = ne[i]) {
            int j = e[i];  // 边的终点j
            if (dist[j] > distance + w[i]) {  // 如果可以通过t松弛j的距离
                dist[j] = distance + w[i];  // 更新j的距离
                heap.push({dist[j], j});  // 将j加入堆
            }
        }
    }

    if (dist[n] == INF) return -1;  // 如果终点n不可达,返回-1
    else return dist[n];  // 否则返回源点到n的最短距离
}

int main()
{
    cin >> n >> m;  // 输入节点数量n,边的数量m
    memset(h, -1, sizeof(h));  // 初始化邻接表,-1表示链表结束

    // 输入m条边
    while (m--) {
        int a, b, c;
        cin >> a >> b >> c;  // 输入边的起点a,终点b,权重c
        add(a, b, c);  // 添加边a->b
    }

    cout << dijkstra(1) << endl;  // 调用Dijkstra算法,输出源点1到终点n的最短距离
    return 0;  // 程序结束
}

【运行结果】

2 2 
1 2 5
2 1 4
5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值