本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:5492. 产生数 - AcWing题库
【题目描述】
给出一个整数 n n n 和 k k k 个变换规则。
关于规则:
- 一位数可变换成另一个一位数:
- 规则的右部不能为零。
例如: n = 234 n=234 n=234,有 k = 2 k=2 k=2 个规则:
- 2 → 5 2\rarr 5 2→5
- 3 → 6 3\rarr 6 3→6
上面的整数 234 234 234 经过变换后可能产生出的整数为(包括原数):
- 234 234 234
- 534 534 534
- 264 264 264
- 564 564 564
共 4 4 4 种不同的产生数。
给出一个整数 n n n 和 k k k 个规则,请你计算,经过任意次的变换( 0 0 0 次或多次),能产生出多少个不同整数。
仅要求输出个数。
【输入】
第一行包含两个整数 n , k n,k n,k。
接下来 k k k 行,每行包含两个整数 x i , y i x_i,y_i xi,yi,表示一条规则为 x i → y i x_i\rarr y_i xi→yi。
【输出】
一个整数,表示能生出的不同整数的个数。
【输入样例】
234 2
2 5
3 6
【输出样例】
4
【算法标签】
《AcWing 5492 产生数》 #Floyd#
【代码详解】
#include <bits/stdc++.h> // 包含所有标准库头文件
using namespace std;
const int N = 35; // 定义常量:N为节点数量上限
int dist[11][11]; // dist[i][j]:数字i是否可以转换为数字j(1表示可以,0表示不可以)
int num[11]; // num[i]:数字i可以转换的数字种类数
string str; // 存储输入的整数字符串
int k; // 规则数量
int t[N]; // t[i]:整数第i位数字的变换种类数
vector<int> ans; // 存储最终结果的每一位数字
// Floyd-Warshall算法实现
void floyd()
{
// 三重循环,k是中间节点,i是起点,j是终点
for (int k = 1; k <= 9; k++)
for (int i = 0; i <= 9; i++)
for (int j = 0; j <= 9; j++)
// 如果i可以转换为k,且k可以转换为j,则i可以转换为j
if (dist[i][k] && dist[k][j])
dist[i][j] = 1;
}
// 高精度乘法:将高精度数A乘以整数b
vector<int> mul(vector<int> A, int b)
{
int t = 0; // 进位
vector<int> C; // 存储结果
for (int i = 0; i < A.size() || t > 0; i++) {
if (i < A.size()) t = A[i] * b + t; // 计算当前位的乘积并加上进位
C.push_back(t % 10); // 将当前位的值加入结果
t = t / 10; // 计算进位
}
return C; // 返回结果
}
int main()
{
cin >> str >> k; // 输入整数字符串和规则数量
// 初始化dist数组
for (int i = 1; i <= k; i++) {
int a, b;
cin >> a >> b; // 输入规则:a可以转换为b
dist[a][b] = 1; // 标记a可以转换为b
}
floyd(); // 调用Floyd-Warshall算法,计算所有数字之间的转换关系
// 计算每个数字可以转换的数字种类数
for (int i = 0; i <= 9; i++) {
dist[i][i] = 1; // 每个数字可以转换为自身
for (int j = 0; j <= 9; j++)
if (dist[i][j] == 1) num[i]++; // 统计数字i可以转换的数字种类数
}
int len = str.size(); // 获取整数的位数
// 计算每一位数字的变换种类数
for (int i = 0; i < len; i++) {
t[i] = num[str[i] - '0']; // 将字符转换为数字,并获取其变换种类数
}
// 初始化结果为第一位数字的变换种类数
ans.push_back(t[0]);
// 依次乘以每一位数字的变换种类数
for (int i = 1; i < len; i++) {
vector<int> D = mul(ans, t[i]); // 高精度乘法
ans = D; // 更新结果
}
// 输出结果(从高位到低位)
for (int i = ans.size() - 1; i >= 0; i--) {
cout << ans[i];
}
return 0; // 程序结束
}
【运行结果】
234 2
2 5
3 6
4