CSP-J备考冲刺必刷题(C++) | AcWing 5492 产生数

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:5492. 产生数 - AcWing题库

【题目描述】

给出一个整数 n n n k k k 个变换规则。

关于规则:

  • 一位数可变换成另一个一位数:
  • 规则的右部不能为零。

例如: n = 234 n=234 n=234,有 k = 2 k=2 k=2 个规则:

  • 2 → 5 2\rarr 5 25
  • 3 → 6 3\rarr 6 36

上面的整数 234 234 234 经过变换后可能产生出的整数为(包括原数):

  • 234 234 234
  • 534 534 534
  • 264 264 264
  • 564 564 564

4 4 4 种不同的产生数。

给出一个整数 n n n k k k 个规则,请你计算,经过任意次的变换( 0 0 0 次或多次),能产生出多少个不同整数。

仅要求输出个数。

【输入】

第一行包含两个整数 n , k n,k n,k

接下来 k k k 行,每行包含两个整数 x i , y i x_i,y_i xi,yi,表示一条规则为 x i → y i x_i\rarr y_i xiyi

【输出】

一个整数,表示能生出的不同整数的个数。

【输入样例】

234 2
2 5
3 6

【输出样例】

4

【算法标签】

《AcWing 5492 产生数》 #Floyd#

【代码详解】

#include <bits/stdc++.h>  // 包含所有标准库头文件
using namespace std;

const int N = 35;  // 定义常量:N为节点数量上限
int dist[11][11];  // dist[i][j]:数字i是否可以转换为数字j(1表示可以,0表示不可以)
int num[11];  // num[i]:数字i可以转换的数字种类数
string str;  // 存储输入的整数字符串
int k;  // 规则数量
int t[N];  // t[i]:整数第i位数字的变换种类数
vector<int> ans;  // 存储最终结果的每一位数字

// Floyd-Warshall算法实现
void floyd()
{
    // 三重循环,k是中间节点,i是起点,j是终点
    for (int k = 1; k <= 9; k++)
        for (int i = 0; i <= 9; i++)
            for (int j = 0; j <= 9; j++)
                // 如果i可以转换为k,且k可以转换为j,则i可以转换为j
                if (dist[i][k] && dist[k][j])
                    dist[i][j] = 1;
}

// 高精度乘法:将高精度数A乘以整数b
vector<int> mul(vector<int> A, int b)
{
    int t = 0;  // 进位
    vector<int> C;  // 存储结果
    for (int i = 0; i < A.size() || t > 0; i++) {
        if (i < A.size()) t = A[i] * b + t;  // 计算当前位的乘积并加上进位
        C.push_back(t % 10);  // 将当前位的值加入结果
        t = t / 10;  // 计算进位
    }
    return C;  // 返回结果
}

int main()
{
    cin >> str >> k;  // 输入整数字符串和规则数量

    // 初始化dist数组
    for (int i = 1; i <= k; i++) {
        int a, b;
        cin >> a >> b;  // 输入规则:a可以转换为b
        dist[a][b] = 1;  // 标记a可以转换为b
    }

    floyd();  // 调用Floyd-Warshall算法,计算所有数字之间的转换关系

    // 计算每个数字可以转换的数字种类数
    for (int i = 0; i <= 9; i++) {
        dist[i][i] = 1;  // 每个数字可以转换为自身
        for (int j = 0; j <= 9; j++)
            if (dist[i][j] == 1) num[i]++;  // 统计数字i可以转换的数字种类数
    }

    int len = str.size();  // 获取整数的位数

    // 计算每一位数字的变换种类数
    for (int i = 0; i < len; i++) {
        t[i] = num[str[i] - '0'];  // 将字符转换为数字,并获取其变换种类数
    }

    // 初始化结果为第一位数字的变换种类数
    ans.push_back(t[0]);

    // 依次乘以每一位数字的变换种类数
    for (int i = 1; i < len; i++) {
        vector<int> D = mul(ans, t[i]);  // 高精度乘法
        ans = D;  // 更新结果
    }

    // 输出结果(从高位到低位)
    for (int i = ans.size() - 1; i >= 0; i--) {
        cout << ans[i];
    }

    return 0;  // 程序结束
}

【运行结果】

234 2
2 5
3 6
4
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值