CSP-J备考冲刺必刷题(C++) | AcWing 1091 理想的正方形

本文分享的必刷题目是从蓝桥云课洛谷AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。

欢迎大家订阅我的专栏:算法题解:C++与Python实现

附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总


【题目来源】

AcWing:1091. 理想的正方形 - AcWing题库

【题目描述】

有一个 a × b a\times b a×b 的整数组成的矩阵,现请你从中找出一个 n × n n\times n n×n 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

【输入】

第一行为三个整数,分别表示 a , b , n a,b,n a,b,n 的值;

第二行至第 a + 1 a+1 a+1 行每行为 b b b 个非负整数,表示矩阵中相应位置上的数。

【输出】

输出仅一个整数,为 a × b a\times b a×b 矩阵中所有“ n × n n\times n n×n 正方形区域中的最大整数和最小整数的差值”的最小值。

【输入样例】

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2

【输出样例】

1

【算法标签】

《AcWing 1091 理想的正方形》 #DP# #单调队列优化DP#

【代码详解】

#include <bits/stdc++.h>
using namespace std;

const int N = 1005;  // 定义矩阵最大尺寸

// 变量定义:
// n: 矩阵行数
// m: 矩阵列数
// k: 子矩阵边长
// w[N][N]: 存储原始矩阵数据
// row_max[N][N]: 存储每行滑动窗口最大值
// row_min[N][N]: 存储每行滑动窗口最小值
// q[N]: 单调队列辅助数组
int n, m, k;
int w[N][N];
int row_max[N][N], row_min[N][N];
int q[N];

// 获取滑动窗口最小值
void get_min(int a[], int b[], int tot) 
{
    int hh = 0, tt = -1;  // 初始化队列头尾指针
    for (int i = 1; i <= tot; i++) 
	{
        // 维护窗口大小为k
        if (hh <= tt && q[hh] <= i - k) hh++;
        
        // 维护单调递增队列
        while (hh <= tt && a[q[tt]] >= a[i]) tt--;
        
        q[++tt] = i;      // 当前元素入队
        b[i] = a[q[hh]];  // 记录当前窗口最小值
    }
}

// 获取滑动窗口最大值
void get_max(int a[], int b[], int tot) 
{
    int hh = 0, tt = -1;  // 初始化队列头尾指针
    for (int i = 1; i <= tot; i++) 
	{
        // 维护窗口大小为k
        if (hh <= tt && q[hh] <= i - k) hh++;
        
        // 维护单调递减队列
        while (hh <= tt && a[q[tt]] <= a[i]) tt--;
        
        q[++tt] = i;      // 当前元素入队
        b[i] = a[q[hh]];  // 记录当前窗口最大值
    }
}

int main() 
{
    // 输入矩阵尺寸和子矩阵边长
    cin >> n >> m >> k;
    
    // 输入矩阵数据
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            cin >> w[i][j];
    
    // 预处理每行的滑动窗口最值
    for (int i = 1; i <= n; i++) 
	{
        get_min(w[i], row_min[i], m);  // 计算第i行滑动窗口最小值
        get_max(w[i], row_max[i], m);   // 计算第i行滑动窗口最大值
    }
    
    int res = 1e9;  // 初始化结果为极大值
    int a[N], b[N], c[N];  // 临时数组
    
    // 遍历所有可能的列区间
    for (int i = k; i <= m; i++) 
	{
        // 提取当前列的各行最小值
        for (int j = 1; j <= n; j++) a[j] = row_min[j][i];
        get_min(a, b, n);  // 对列方向求滑动窗口最小值
        
        // 提取当前列的各行最大值
        for (int j = 1; j <= n; j++) a[j] = row_max[j][i];
        get_max(a, c, n);  // 对列方向求滑动窗口最大值
        
        // 计算所有k×k子矩阵的极差并更新最小值
        for (int j = k; j <= n; j++)
            res = min(res, c[j] - b[j]);
    }
    
    // 输出所有k×k子矩阵中的最小极差
    cout << res << endl;
    
    return 0;
}

【运行结果】

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值