本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:1091. 理想的正方形 - AcWing题库
【题目描述】
有一个 a × b a\times b a×b 的整数组成的矩阵,现请你从中找出一个 n × n n\times n n×n 的正方形区域,使得该区域所有数中的最大值和最小值的差最小。
【输入】
第一行为三个整数,分别表示 a , b , n a,b,n a,b,n 的值;
第二行至第 a + 1 a+1 a+1 行每行为 b b b 个非负整数,表示矩阵中相应位置上的数。
【输出】
输出仅一个整数,为 a × b a\times b a×b 矩阵中所有“ n × n n\times n n×n 正方形区域中的最大整数和最小整数的差值”的最小值。
【输入样例】
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
【输出样例】
1
【算法标签】
《AcWing 1091 理想的正方形》 #DP# #单调队列优化DP#
【代码详解】
#include <bits/stdc++.h>
using namespace std;
const int N = 1005; // 定义矩阵最大尺寸
// 变量定义:
// n: 矩阵行数
// m: 矩阵列数
// k: 子矩阵边长
// w[N][N]: 存储原始矩阵数据
// row_max[N][N]: 存储每行滑动窗口最大值
// row_min[N][N]: 存储每行滑动窗口最小值
// q[N]: 单调队列辅助数组
int n, m, k;
int w[N][N];
int row_max[N][N], row_min[N][N];
int q[N];
// 获取滑动窗口最小值
void get_min(int a[], int b[], int tot)
{
int hh = 0, tt = -1; // 初始化队列头尾指针
for (int i = 1; i <= tot; i++)
{
// 维护窗口大小为k
if (hh <= tt && q[hh] <= i - k) hh++;
// 维护单调递增队列
while (hh <= tt && a[q[tt]] >= a[i]) tt--;
q[++tt] = i; // 当前元素入队
b[i] = a[q[hh]]; // 记录当前窗口最小值
}
}
// 获取滑动窗口最大值
void get_max(int a[], int b[], int tot)
{
int hh = 0, tt = -1; // 初始化队列头尾指针
for (int i = 1; i <= tot; i++)
{
// 维护窗口大小为k
if (hh <= tt && q[hh] <= i - k) hh++;
// 维护单调递减队列
while (hh <= tt && a[q[tt]] <= a[i]) tt--;
q[++tt] = i; // 当前元素入队
b[i] = a[q[hh]]; // 记录当前窗口最大值
}
}
int main()
{
// 输入矩阵尺寸和子矩阵边长
cin >> n >> m >> k;
// 输入矩阵数据
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
cin >> w[i][j];
// 预处理每行的滑动窗口最值
for (int i = 1; i <= n; i++)
{
get_min(w[i], row_min[i], m); // 计算第i行滑动窗口最小值
get_max(w[i], row_max[i], m); // 计算第i行滑动窗口最大值
}
int res = 1e9; // 初始化结果为极大值
int a[N], b[N], c[N]; // 临时数组
// 遍历所有可能的列区间
for (int i = k; i <= m; i++)
{
// 提取当前列的各行最小值
for (int j = 1; j <= n; j++) a[j] = row_min[j][i];
get_min(a, b, n); // 对列方向求滑动窗口最小值
// 提取当前列的各行最大值
for (int j = 1; j <= n; j++) a[j] = row_max[j][i];
get_max(a, c, n); // 对列方向求滑动窗口最大值
// 计算所有k×k子矩阵的极差并更新最小值
for (int j = k; j <= n; j++)
res = min(res, c[j] - b[j]);
}
// 输出所有k×k子矩阵中的最小极差
cout << res << endl;
return 0;
}
【运行结果】
5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
1