欢迎大家订阅我的专栏:算法题解:C++与Python实现!
本专栏旨在帮助大家从基础到进阶 ,逐步提升编程能力,助力信息学竞赛备战!
专栏特色
1.经典算法练习:根据信息学竞赛大纲,精心挑选经典算法题目,提供清晰的代码实现与详细指导,帮助您夯实算法基础。
2.系统化学习路径:按照算法类别和难度分级,从基础到进阶,循序渐进,帮助您全面提升编程能力与算法思维。
适合人群:
- 准备参加蓝桥杯、GESP、CSP-J、CSP-S等信息学竞赛的学生
- 希望系统学习C++/Python编程的初学者
- 想要提升算法与编程能力的编程爱好者
附上汇总贴:学而思编程2025年CodeStars年度综合评估真题解析 | 汇总
【题目来源】
小猴编程:学而思编程CodeStars年度综合评估
【题目描述】
皮皮通过玩具赚了很多钱,因此他去银行升级自己的账户。当他办理完业务后,发现 M M M 个柜台都排了好多的人,由于皮皮今天特别无聊,于是决定观察大家的排队方法。
在皮皮开始观察的时候,所有柜台前一共有 K K K 个人在排队或办理业务,办理业务的人有一个剩余办理业务时间,排队的人有一个预计办理业务时间。
在接下来的时间里,一共进来了 N N N 个人,其中第 i i i 个人是在皮皮开始观察后的第 X i X_i Xi 秒进入银行的。每个人都会选择人数最少的一个队伍。如果有多个队伍人数一样,则会选择编号较小的一个。
每一个人会有性别、年龄、预计办理业务时间等信息。如果有多个人同时进来,女士优先选择队伍。性别相同时年龄小的优先选择队伍,年龄相同时办理业务时间较短的优先选择队伍。
我们默认一个人办完业务离开队列是不花时间的,也就是说每个时刻都是办理完业务的人先出队,然后新的顾客才到来。
皮皮认为,即使每个顾客都按照这个规律,也会出现有些柜台排队时间明显更久的情况,为了证明他的想法是正确的,你需要帮他求出每个柜台的最后一个人办理完业务的具体时间(皮皮开始观察的时间记为0)。
【输入】
第一行三个正整数 N N N, M M M 和 K K K,分别表示后续进来的人数,柜台数目以及此时已有人数;
接下来 K K K 行,每行两个整数 C i C_i Ci 和 T i T_i Ti, C i C_i Ci 表示所在的柜台编号,如果是该柜台第一个人 T i T_i Ti 表示剩余办理业务时间,否则表示预计办理业务时间;
接下来 N N N 行,每行三个整数 X i X_i Xi、 T i T_i Ti、 A i A_i Ai 和一个字符 S i S_i Si。 X i X_i Xi 表示进入银行的时间, T i T_i Ti 表示预计办理业务时间, A i A_i Ai 表示年龄, S i S_i Si 有’F’和’M’两种分别表示女性和男性,保证 X i X_i Xi 为严格不下降。
【输出】
输出共 M M M 行,第 i i i 行一个整数,表示 i i i 号柜台最后一人办理完业务的时间。
【输入样例】
5 2 3
2 4
1 6
2 1
3 2 23 M
3 1 25 F
6 2 34 M
8 3 23 F
8 1 23 F
【输出样例】
12
9
【代码详解】
// 70分解法
#include <bits/stdc++.h>
using namespace std;
const int N = 200005; // 定义最大人数
// 客户结构体
struct people
{
int x; // 到达时间
int t; // 处理时间
int a; // 年龄
char e; // 性别('F'或'M')
} p[N];
// 自定义排序比较函数
bool cmp(people a, people b)
{
// 优先按到达时间排序
if (a.x != b.x)
{
return a.x < b.x;
}
// 其次女性优先
if (a.e != b.e)
{
return a.e == 'F';
}
// 然后年龄小的优先
if (a.a != b.a)
{
return a.a < b.a;
}
// 最后处理时间短的优先
return a.t < b.t;
}
// 全局变量:
// n: 客户数量
// m: 窗口数量
// k: 初始队列中的客户数
// sum[N]: 记录每个窗口初始客户数
// tim[N]: 记录每个窗口的当前时间
// q[N]: 每个窗口的客户队列
int n, m, k, sum[N], tim[N];
queue<int> q[N];
int main()
{
// 输入窗口数、初始客户数和总客户数
cin >> n >> m >> k;
// 处理初始队列中的客户
for (int i = 1; i <= k; i++)
{
int x, t;
cin >> x >> t;
sum[x]++; // 统计每个窗口初始客户数
tim[x] += t; // 累加每个窗口的处理时间
q[x].push(tim[x]); // 将客户加入对应窗口队列
}
// 输入所有客户信息
for (int i = 1; i <= n; i++)
{
cin >> p[i].x >> p[i].t >> p[i].a >> p[i].e;
}
// 按自定义规则排序客户
sort(p + 1, p + 1 + n, cmp);
// 处理每个客户
for (int i = 1; i <= n; i++)
{
int id = 1; // 默认选择第一个窗口
// 寻找当前客户最少的窗口
for (int j = 1; j <= m; j++)
{
// 弹出已完成的客户
while (!q[j].empty() && q[j].front() <= p[i].x)
{
q[j].pop();
}
// 比较窗口队列长度
if (q[j].size() < q[id].size())
{
id = j;
}
}
// 更新选中窗口的时间
tim[id] = max(tim[id], p[i].x) + p[i].t;
q[id].push(tim[id]); // 将客户加入队列
}
// 输出每个窗口的最终时间
for (int i = 1; i <= m; i++)
{
cout << tim[i] << endl;
}
return 0;
}
// 满分做法
#include <bits/stdc++.h>
using namespace std;
const int N = 200005; // 定义最大客户数量
// 定义窗口节点结构体,用于优先队列
struct node
{
int t, x; // t: 时间,x: 窗口编号
// 重载小于运算符,用于优先队列排序
bool operator < (const node &b) const
{
// 先按时间排序,时间相同则按窗口编号排序
return t == b.t ? x > b.x : t > b.t;
}
};
// 定义客户结构体
struct people
{
int x, t, a; // x: 到达时间,t: 处理时间,a: 年龄
char e; // e: 性别
} p[N];
// 客户排序比较函数
bool cmp(people a, people b)
{
if (a.x != b.x) return a.x < b.x; // 先按到达时间排序
if (a.e != b.e) return a.e == 'F'; // 女性优先
if (a.a != b.a) return a.a < b.a; // 年龄小的优先
return a.t < b.t; // 处理时间短的优先
}
// 全局变量:
// n: 客户数量
// m: 窗口数量
// k: 初始已处理客户数量
// sum[N]: 记录每个窗口处理的客户数量
// tim[N]: 记录每个窗口的结束时间
int n, m, k, sum[N], tim[N];
// 优先队列:
// q1: 按窗口结束时间排序
// q2: 按窗口处理客户数量排序
priority_queue<node> q1, q2;
int main()
{
// 输入窗口数量、客户数量和初始已处理客户数量
scanf("%d%d%d", &n, &m, &k);
// 处理初始已处理的客户
for (int i = 1; i <= k; i++)
{
int x, t;
scanf("%d%d", &x, &t); // 输入窗口编号和处理时间
sum[x]++; // 增加窗口处理客户数
tim[x] += t; // 更新窗口结束时间
q1.push((node){tim[x], x}); // 将窗口信息加入q1队列
}
// 初始化q2队列
for (int i = 1; i <= m; i++)
{
q2.push((node){sum[i], i});
}
// 输入新客户信息
for (int i = 1; i <= n; i++)
{
scanf("%d%d%d %c", &p[i].x, &p[i].t, &p[i].a, &p[i].e);
}
// 按优先级排序客户
sort(p + 1, p + 1 + n, cmp);
// 处理每个客户
for (int i = 1; i <= n; i++)
{
// 检查是否有窗口在当前客户到达前已完成处理
while (!q1.empty())
{
if (q1.top().t <= p[i].x) // 窗口已完成处理
{
int x = q1.top().x;
q1.pop();
sum[x]--; // 减少窗口处理客户数
q2.push((node){sum[x], x}); // 更新q2队列
}
else
{
break;
}
}
// 选择处理客户数最少的窗口
int x = q2.top().x;
while (sum[x] != q2.top().t) // 确保数据一致性
{
q2.pop();
x = q2.top().x;
}
q2.pop();
// 更新窗口状态
sum[x]++;
tim[x] = max(tim[x], p[i].x) + p[i].t; // 计算新的结束时间
q1.push((node){tim[x], x}); // 更新q1队列
q2.push((node){sum[x], x}); // 更新q2队列
}
// 输出每个窗口的最终结束时间
for (int i = 1; i <= m; i++)
{
printf("%d\n", tim[i]);
}
return 0;
}
【运行结果】
5 2 3
2 4
1 6
2 1
3 2 23 M
3 1 25 F
6 2 34 M
8 3 23 F
8 1 23 F
12
9