本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。
欢迎大家订阅我的专栏:算法题解:C++与Python实现!
附上汇总贴:算法竞赛备考冲刺必刷题(C++) | 汇总
【题目来源】
AcWing:1164. 加工零件 - AcWing题库
【题目描述】
凯凯的工厂正在有条不紊地生产一种神奇的零件,神奇的零件的生产过程自然也很神奇。工厂里有 n n n 位工人,工人们从 1 ∼ n 1∼n 1∼n 编号。某些工人之间存在双向的零件传送带。保证每两名工人之间最多只存在一条传送带。
如果 x x x 号工人想生产一个被加工到第 L ( L > 1 ) L(L>1) L(L>1) 阶段的零件,则所有与 x x x 号工人有传送带直接相连的工人,都需要生产一个被加工到第 L − 1 L−1 L−1 阶段的零件(但 x x x 号工人自己无需生产第 L − 1 L−1 L−1 阶段的零件)。
如果 x x x 号工人想生产一个被加工到第 1 1 1 阶段的零件,则所有与 x x x 号工人有传送带直接相连的工人,都需要为 x x x 号工人提供一个原材料。
轩轩是 1 1 1 号工人。现在给出 q q q 张工单,第 i i i 张工单表示编号为 a i a_i ai 的工人想生产一个第 L i L_i Li 阶段的零件。轩轩想知道对于每张工单,他是否需要给别人提供原材料。他知道聪明的你一定可以帮他计算出来!
【输入】
第一行三个正整数 n n n, m m m 和 q q q,分别表示工人的数目、传送带的数目和工单的数目。
接下来 m m m 行,每行两个正整数 u u u 和 v v v,表示编号为 u u u 和 v v v 的工人之间存在一条零件传输带。保证 u ≠ v u\neq v u=v。
接下来 q q q 行,每行两个正整数 a a a 和 L L L,表示编号为 a a a 的工人想生产一个第 L L L 阶段的零件。
【输出】
共
q
q
q 行,每行一个字符串 Yes
或者 No
。如果按照第
i
i
i 张工单生产,需要编号为
1
1
1 的轩轩提供原材料,则在第
i
i
i 行输出 Yes
;否则在第
i
i
i 行输出 No
。注意输出不含引号。
【输入样例】
3 2 6
1 2
2 3
1 1
2 1
3 1
1 2
2 2
3 2
【输出样例】
No
Yes
No
Yes
No
Yes
【算法标签】
《AcWing 1164 加工零件》 #最短路# #BFS# #拆点#
【代码详解】
#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII; // 定义 pair 类型,存储节点编号和类型
const int N = 1e5 + 10, M = N * 2, INF = 1e9 + 1000; // 定义常量
vector<int> h[N]; // 邻接表存储图
queue<PII> que; // BFS 使用的队列,存储节点编号和类型
int n, m, q; // n 是节点数量,m 是边的数量,q 是查询数量
int dist[N][2]; // dist[i][0] 表示从节点 1 到节点 i 的偶数步数距离,dist[i][1] 表示奇数步数距离
// BFS 函数,计算从节点 1 到其他节点的偶数步数和奇数步数距离
void bfs() {
// 初始化距离数组为 INF
memset(dist, 0x3f, sizeof(dist));
dist[1][0] = 0; // 起点到自身的偶数步数距离为 0
que.push({1, 0}); // 将起点加入队列,类型为 0(偶数步数)
while (!que.empty()) { // 当队列不为空时
PII nd = que.front(); // 取出队首节点
que.pop(); // 弹出队首节点
// 遍历当前节点的所有邻接节点
for (int i = 0; i < h[nd.first].size(); i++) {
int j = h[nd.first][i]; // 邻接节点 j
int type = nd.second ^ 1; // 切换类型(偶数步数 -> 奇数步数,奇数步数 -> 偶数步数)
// 如果当前路径可以更新节点 j 的距离
if (dist[j][type] > dist[nd.first][nd.second] + 1) {
dist[j][type] = dist[nd.first][nd.second] + 1; // 更新距离
que.push({j, type}); // 将节点 j 加入队列
}
}
}
}
int main() {
cin >> n >> m >> q; // 读取节点数量 n、边的数量 m 和查询数量 q
// 读取边的信息并构建图
while (m--) {
int a, b;
cin >> a >> b; // 读取边的两个端点
h[a].push_back(b); // 添加边 a -> b
h[b].push_back(a); // 添加边 b -> a
}
bfs(); // 调用 BFS 函数计算距离
// 处理查询
while (q--) {
int a, L;
cin >> a >> L; // 读取查询的节点 a 和步数 L
// 判断是否满足条件
if (a == 1 && h[1].size() == 0) // 如果查询的是起点且起点没有邻接节点
puts("No");
else if (L >= dist[a][L & 1]) // 如果步数 L 大于等于节点 a 的对应类型距离
puts("Yes");
else // 否则
puts("No");
}
return 0;
}
【运行结果】
3 2 6
1 2
2 3
1 1
No
2 1
Yes
3 1
No
1 2
Yes
2 2
No
3 2
Yes