# Gurobi之Python调用实例——简单整数规划

maxs.t.x+y+2zx+2y+3z4x+y1x,y,zbinary(78) (78) m a x x + y + 2 z s . t . x + 2 y + 3 z ≤ 4 x + y ≥ 1 x , y , z b i n a r y

Python代码：

from gurobipy import *

try:

# Create a new model
m = Model("mip1")

# Create variables
x = m.addVar(vtype=GRB.BINARY, name="x")
y = m.addVar(vtype=GRB.BINARY, name="y")
z = m.addVar(vtype=GRB.BINARY, name="z")

# Set objective
m.setObjective(x + y + 2 * z, GRB.MAXIMIZE)

# Add constraint: x + 2 y + 3 z <= 4
m.addConstr(x + 2 * y + 3 * z <= 4, "c0")

# Add constraint: x + y >= 1
m.addConstr(x + y >= 1, "c1")

m.optimize()

for v in m.getVars():
print('%s %g' % (v.varName, v.x))

print('Obj: %g' % m.objVal)

except GurobiError as e:
print('Error code ' + str(e.errno) + ": " + str(e))

except AttributeError:
print('Encountered an attribute error')

Optimize a model with 2 rows, 3 columns and 5 nonzeros
Variable types: 0 continuous, 3 integer (3 binary)
Coefficient statistics:
Matrix range     [1e+00, 3e+00]
Objective range  [1e+00, 2e+00]
Bounds range     [1e+00, 1e+00]
RHS range        [1e+00, 4e+00]
Found heuristic solution: objective 2.0000000
Presolve removed 2 rows and 3 columns
Presolve time: 0.02s
Presolve: All rows and columns removed

Explored 0 nodes (0 simplex iterations) in 0.02 seconds
Thread count was 1 (of 4 available processors)

Solution count 2: 3 2

Optimal solution found (tolerance 1.00e-04)
Best objective 3.000000000000e+00, best bound 3.000000000000e+00, gap 0.0000%
x 1
y 0
z 1
Obj: 3

06-18

04-08 2万+
02-08 3470
12-19 2万+
06-20
07-19 5410
03-08 8604
12-29 1297
07-12 1万+
01-16
©️2020 CSDN 皮肤主题: 精致技术 设计师:CSDN官方博客