Leetcode 15: 3Sum

记录一下采坑,网上的都是说O(n^2)能过,我刚开始写了个,硬是没过,后来发现卡在查找上了,

.这里的思想就是使用多的空间来减少时间,将排序后的原数组进行分类

1.正数和负数分开

2.重复和不重复的分开

3.字典记录(用于后面查找,我这里如果用list查找,无论如何都会变成O(n^3)),python自己实现一个hash表又感觉太离谱了

简单的思想,额外的空间复杂度.

理论上小于O(N^2),网上的双指针我本地测试是0.64s,这份代码是0.28s.

class Solution:
    def threeSum(self, nums):
        re_list = []
        postive = []
        postive_2 = []
        negative = []
        negative_2 = []
        zero = []
        nums.sort()
        dic = dict()
        for i in range(len(nums)):
            if nums[i] < 0:
                if nums[i] not in dic:
                    negative.append(nums[i])
                    dic[nums[i]] = 1
                else:
                    if dic[nums[i]] == 1:
                        negative_2.append(nums[i])
                        negative_2.append(nums[i])
                        dic[nums[i]] = 2
            elif nums[i] == 0:
                zero.append(0)
            else:
                if nums[i] not in dic:
                    postive.append(nums[i])
                    dic[nums[i]] = 1
                else:
                    if dic[nums[i]] == 1:
                        postive_2.append(nums[i])
                        postive_2.append(nums[i])
                        dic[nums[i]] = 2

        if len(zero) > 2:
            re_list.append([0, 0, 0])
        for i in range(len(postive)):
            for j in range(i + 1, len(postive)):
                b = -(postive[i] + postive[j])
                if b in dic:
                    re_list.append([postive[i],postive[j], b])
        for i in range(len(negative)):
            for j in range(i + 1, len(negative)):
                b = (negative[i] + negative[j])*-1
                if b in dic:
                    re_list.append([negative[i], negative[j], b])

        for i in range(0, len(negative_2), 2):
            b = (negative_2[i] + negative_2[i + 1])*-1
            if b in dic:
                re_list.append([negative_2[i],negative_2[i + 1], b])
        for i in range(0, len(postive_2), 2):
            b = (postive_2[i] + postive_2[i + 1])*-1
            if b in dic:
                re_list.append([postive_2[i],postive_2[i + 1], b])

        if len(negative) > 0 and len(postive) > 0 and len(zero) > 0:
            for i in range(len(postive)):
                b = postive[i]*-1
                if b in dic:
                    re_list.append([postive[i], b, 0])

        return re_list
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值