Python 朴素贝叶斯 垃圾短信分类

本文介绍了使用Python的朴素贝叶斯算法对100W条短信进行垃圾短信分类的毕设项目。实验环境包括Python、Anaconda、Pycharm、Hadoop和Spark。预处理步骤涉及文本分离、分词、去停用词和去单字。最终通过朴素贝叶斯算法得出分类结果。
摘要由CSDN通过智能技术生成

0.前言

没写完.有时间会更新

这是接着我的第一篇博客,搭建好Hadoop伪分布式后,完成的整个毕设.毕设的主要内容是完成对100W短信进行垃圾短信分类.其中80W是含有标签0/1的数据,还有20W是无标签数据.最后的效果评判主要是进行交叉验证.

1.总体思路

首先是用到的实验环境和相关技术

1.1实验环境

Python 3.6.5 + Anaconda3 + Pycharm + Hadoop + spark

伪分布式的Hadoop搭建参见我的博客

伪分布式Hadoop的搭建

其实,不用Hadoop + spark也能跑,我只是觉得毕设工作量太少,所以强行加的.

1,2思路

当初也很小白,简单的思路就是分离数据和标签文本分词套用已有的朴素贝叶斯库---->得出结果.

后来和实验室的老师交流的过程中才觉得缺了很多步骤.

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值