matplotlib matplotlib样式设置、子图操作、图例设置(二)

本文详细介绍了如何使用matplotlib进行数据可视化,包括设置横纵坐标的标签与注解,创建和管理子图,颜色设置以及图例的设置方法。通过实例演示了如何展示1948-1952年的月度失业率趋势,以及如何清晰地呈现不同时间段的数据。
摘要由CSDN通过智能技术生成

@[TOC](matplotlib matplotlib样式设置、子图操作、图例设置(二))

在这里插入图片描述

#%% md

## matplotlib设置横坐标纵坐标数据注解

#%% md

![title](unrate.jpg)

#%%

import pandas as pd
import matplotlib.pyplot as plt

unrate = pd.read_csv('unrate.csv')
unrate['DATE'] = pd.to_datetime(unrate['DATE'])
first_twelve = unrate[0:12]
plt.plot(first_twelve['DATE'], first_twelve['VALUE'])
plt.xticks(rotation=45)
plt.xlabel('Month')
plt.ylabel('Unemployment Rate')
plt.title('Monthly Unemployment Trends, 1948')
plt.show()

#%% md

## matplotlib设置子图操作

#%%

#add_subplot(first,second,index) first means number of Row,second means number of Column.

import matplotlib.pyplot as plt
fig = plt.figure()
ax1 = fig.add_subplot(2,2,1)
ax2 = fig.add_subplot(2,2,2)
ax2 = fig.add_subplot(2,2,4)
plt.show()

#%%

import numpy as np
fig = plt.figure()  # 创建画布
fig = plt.figure(figsize=(3, 3))   # 指定画布的大小
ax1 = fig.add_subplot(2,1,1)
ax2 = fig.add_subplot(2,1,2)

ax1.plot(np.random.randint(1,5,5), np.arange(5))
ax2.plot(np.arange(10)*3, np.arange(10))
plt.show()

#%%

unrate['MONTH'] = unrate['DATE'].dt.month   # 获取到对应的月份
unrate

#%%

fig = plt.figure(figsize=(6,3))

plt.plot(unrate[0:12]['MONTH'], unrate[0:12]['VALUE'], c='red')
plt.plot(unrate[12:24]['MONTH'], unrate[12:24]['VALUE'], c='blue')

plt.show()

#%% md

## matplotlib颜色设置

#%%

fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    print(i)
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i])
    
plt.show()

#%% md

## matplotlib设置图例

#%%

fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    label = str(1948 + i)
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label)   # label:设置图例
plt.legend(loc='best')   # loc:设置图例放置的位置
#print help(plt.legend)
plt.show()

#%%

fig = plt.figure(figsize=(10,6))
colors = ['red', 'blue', 'green', 'orange', 'black']
for i in range(5):
    start_index = i*12
    end_index = (i+1)*12
    subset = unrate[start_index:end_index]
    label = str(1948 + i)
    plt.plot(subset['MONTH'], subset['VALUE'], c=colors[i], label=label)
plt.legend(loc='upper left')   # # loc:设置图例放置的位置
plt.xlabel('Month, Integer')
plt.ylabel('Unemployment Rate, Percent')
plt.title('Monthly Unemployment Trends, 1948-1952')

plt.show()


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值