990. 等式方程的可满足性

该博客讨论了一种使用并查集数据结构来判断一组变量等式是否有可能同时满足的方法。代码中展示了如何通过并查集的路径压缩和连通性检查来解决这个问题。如果存在环或者不一致的条件,算法会返回false;否则,返回true。这在解决逻辑推理或数学问题时非常有用。
摘要由CSDN通过智能技术生成

给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:"a==b" 或 "a!=b"。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。

只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。

 

示例 1:

输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。

示例 2:

输入:["b==a","a==b"]
输出:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。

示例 3:

输入:["a==b","b==c","a==c"]
输出:true

示例 4:

输入:["a==b","b!=c","c==a"]
输出:false

示例 5:

输入:["c==c","b==d","x!=z"]
输出:true

 

提示:

    1 <= equations.length <= 500
    equations[i].length == 4
    equations[i][0] 和 equations[i][3] 是小写字母
    equations[i][1] 要么是 '=',要么是 '!'
    equations[i][2] 是 '='

来源:力扣(LeetCode)
题目链接

代码:

class Solution {
public:
int F[10001];
int find(int x) {
    int a = x;
    while(x != F[x])
        x = F[x];
    while(a != F[a]) {
        int z = a;
        a = F[a];
        F[z] = x;
    }
    return x;
}
void Union(int x,int y)
{
    int fx=find(x);
    int fy=find(y);
    if(fx!=fy)
        {
            F[fx]=fy;
        }
}
    bool equationsPossible(vector<string>& equations) {
        int i;
    for(i=1;i<=10000;i++)
        F[i]=i;
    for(i=0;i<equations.size();i++){
        if(equations[i][0]==equations[i][3]&&equations[i][1]=='!'){
            return false;
        }
        if(equations[i][1]=='='){
            Union(equations[i][0],equations[i][3]);
        }
    }
    for(i=0;i<equations.size();i++){
        if(equations[i][1]=='!'){
            int root1=find(equations[i][0]);
            int root2=find(equations[i][3]);
            if(root1==root2){
                return false;
            }
        }
    }
    return true;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值