给定一个由表示变量之间关系的字符串方程组成的数组,每个字符串方程 equations[i] 的长度为 4,并采用两种不同的形式之一:“a==b” 或 “a!=b”。在这里,a 和 b 是小写字母(不一定不同),表示单字母变量名。
只有当可以将整数分配给变量名,以便满足所有给定的方程时才返回 true,否则返回 false。
示例1:
输入:["a==b","b!=a"]
输出:false
解释:如果我们指定,a = 1 且 b = 1,那么可以满足第一个方程,但无法满足第二个方程。没有办法分配变量同时满足这两个方程。
示例2:
输出:["b==a","a==b"]
输入:true
解释:我们可以指定 a = 1 且 b = 1 以满足满足这两个方程。
示例3:
输入:["a==b","b==c","a==c"]
输出:true
示例4:
输入:["a==b","b!=c","c==a"]
输出:false
示例5:
输入:["c==c","b==d","x!=z"]
输出:true
提示:
1 <= equations.length <= 500
equations[i].length == 4
equations[i][0] 和 equations[i][3] 是小写字母
equations[i][1] 要么是 '=',要么是 '!'
equations[i][2] 是 '='
昨天又咕咕咕了,u1si这学期才学dijkstra算法,思路简直秒出,但是复现真的是车祸现场,bug层出不穷,最近的情况还得办事,每天只给了自己两小时做题时间,昨天是真没整出来,埋坑+1。
思路:等式相等具有传递性,一开始想到的是图,想到昨天的复现瞬间不想做了,后面又觉得可以用并查集,主要思路如下:因为是26个小写字母,用长度为26的数组表示顶点;做两次遍历,先扫描所有等式,将等式两边的顶点合并成一个集合;再扫描所有的不等式,检查不等式的两个顶点是不是在一个集合里(根节点是否相同),如果在就直接返回 false 。如果所有检查都没有矛盾,返回 true。
代码如下:
class UnionFind{
int parent[26];
public:
//初始化
UnionFind(){
for(int i = 0; i < 26; ++i)
parent[i] = i;
}
//查找根节点
int find(int x){
if(parent[x] == x)
return parent[x];
return parent[x] = find(parent[x]);
}
//合并
void merge(int x, int y){
int a = find(x);
int b = find(y);
parent[a] = b;
}
};
class Solution {
public:
bool equationsPossible(vector<string>& equations) {
UnionFind u;
for(int i=0;i<equations.size();i++){
if(equations[i][1]=='=') {
int x=equations[i][0]-'a';
int y=equations[i][3]-'a';
if(u.find(x)!=u.find(y)) //二者根节点不同,合并
u.merge(x,y);
}
}
for(int i=0;i<equations.size();i++){
//取不等式
if(equations[i][1]=='!') {
int x=equations[i][0]-'a';
int y=equations[i][3]-'a';
if(u.find(x)==u.find(y)) //二者根节点相同说明x=y,不满足条件故返回false
return false;
}
}
return true;
}
};
运行结果:
和官方题解是一个思路,但是跑了下代码发现官方的是8ms,仔细看了看复现发现是类里边初始化的时间差,官方用的iota要比循环赋值快,而我这里用的for遍历,改了之后我也是8ms了,iota牛逼,又学到一个函数。
改动部分:
//初始化
UnionFind(){
iota(parent, parent+26, 0);
}
运行结果: