【AI提示词】总结了30个DeepSeek降重指令,让论文重复率降至6%

在这里插入图片描述

大家好,我是哪吒。今天给大家分享30个AI提示词,让你的论文查重率降至6%

在当前学术写作中,重复率控制已超越简单的文字重构,演变为一项涵盖学术创新表达、学科术语标准化及研究逻辑重构的系统工程。

本文基于500+篇SCI/SSCI论文的实践经验,总结了20条AI高阶提示词和10个降低论文查重率。

1、词汇精准优化

**学科术语标准化替换:**依据【学科名称】领域最新文献与《学科术语白皮书(2023版)》,将【目标词汇】替换为3个专业同义词,优先采纳JCR Q1期刊高频词。

**动态词性转换:**将动词转换为名词化学术表达,并添加限定性定语,确保符合APA格式规范。

**程度量化表达:**将“显著”等模糊副词替换为包含具体统计指标(如p值、置信区间)的量化描述,参照《Nature》方法学标准。

**跨学科概念迁移:**将【原学科】的【概念】用【目标学科】的等效理论重新表述,运用目标学科等效理论重构原学科概念,确保术语兼容且语义完整。

**时空条件限定:**在【目标陈述】前添加具体时间、区域及实验条件,参照《Science》实证研究范式。

2、句式学术重构

**复合逻辑构建:**采用“不仅…更…、既…又…”等复合句式,结合因果连接词(如“基于”、“由此”、“鉴于”)重构简单句,满足《中国社会科学》论证要求。

**数据嵌入表达:**将独立数据陈述转化为括号内说明格式,包含单位、显著性标记及样本量(n=),符合【研究生】技术论文数据呈现规范。

**学术否定转换:**将肯定句转换为双重否定表达(如“并非不具…”、“难以否认…”),契合《哲学研究》辩证论述标准。

**跨语言重构:**翻译为英文,调整语序和修饰结构,最终达到《外语教学与研究》的跨语言学术表达要求。

**文献嵌入论证:**将独立观点改写为“正如XX学派(2023)所强调……”的文献佐证格式,标注DOI编号,参照【研究生】技术论文引用规范。

3、段落深度重构

**多维逻辑流重组:**依据“理论缺口、方法论创新、实证验证、学术价值”四维结构重组段落,并添加过渡句以形成严谨逻辑链。

**跨文献概念融合:**搜索网络上近五年顶刊文献中对某概念的不同定义,生成涵盖三学科视角的综合表述,符合【学科名称】研究要求。

**方法论升级:**将实验步骤描述转换为阶段化实施框架,每阶段标明起止时间、质量控制点及伦理审查号,符合CONSORT标准。

**数据叙事化重构:**将表格数据转化为“现象描述、异常识别、归因分析”的叙事链,并结合趋势预测模型(如ARIMA),符合《数据科学期刊》分析标准。

**学术争议建模:**在结论中引入两个对立理论,构建“主张、反论、回应”的辩证结构,遵循《辩证法研究》书写规范。

4、系统学术创新

**理论框架迁移:**利用【目标理论】重构研究问题,构建包含“核心命题、理论边界、应用场景”的新框架,符合《社会学研究》理论建构标准。

**混合方法设计:**设计包括量化、质性与德尔菲法的三阶段混合研究方案,明确样本量计算依据、信效度检验及伦理审查编码。

**反直觉结论推导:**基于数据中异常值构建与主流相悖的假设,运用贝叶斯反事实推理,符合《科学革命的结构》范式。

**学术辩论沙盘:**模拟虚拟学术辩论场景,提出并逐一反驳来自实证主义、建构主义与批判理论的异议,参照《学术论战写作指南》。

**学术边界拓展:**在现有研究基础上构建“理论贡献→实践启示→未来方向”三维价值体系,每一维度提出两项可验证命题,符合《研究政策》创新性评价标准。

总之,AI提示词不仅助力跨越重复率门槛,更推动了学术表达的进化,如同PCR技术革新了基因编辑,AI正在重塑学术创作的“DNA”。

5、降低论文查重率

请将下列论文段落用学术化、被动语态重新改写,确保保留原意,但采用不同句式结构。

请对以下文本进行同义词替换和语序调整,使用专业术语表达,并重构句子结构以降低重复率。

请将以下段落拆分为多个简短句子,再重新组合成逻辑清晰的复合句,同时保持学术严谨性。

请根据最新学科标准,将下列内容中的术语替换为符合《学科术语白皮书(2023版)》的专业同义词,并调整表达结构。

请将下面的论述转换为包含具体统计指标(如p值、置信区间)的量化表达,确保数据表达准确且语言新颖。

请将下列内容按照‘理论背景→方法论→实证结果→讨论’的逻辑结构重新组织和改写,以形成全新的论证框架。

请以跨学科视角重新阐述以下段落,将原有概念迁移到目标领域,并采用不同表达方式进行描述。

请将以下文本用简洁、逻辑严谨的学术语言重写,避免直接照搬,确保内容表达原创且符合期刊要求。

请对下列句子进行同义句转换和语序调整,同时加入适当的转折和连接词,改写成全新的学术表述。

请对以下内容进行降重处理,采用文献嵌入与引用转换的方法,重写成符合国际期刊标准的学术论文表达。

如何使用满血DeepSeek r1

很多人想重试本地部署DeepSeek,对接DeepSeek api,对于大多数小伙伴而言,门槛还是过高,即使部署成功,也会因为电脑配置等原因,只能部署 7B、8B 的版本,不是满血版的 671B 的 deepseek,体验不佳。

部署完,还需要不断地氪金才能使用,对接满血版的 671B 的 deepseek挺烧钱的,我现在每天要花费两三百的deepseek api费用,才实现了满血版的 671B 的 deepseek。

下面分享给大家:

推荐谷歌浏览器访问:满血DeepSeek R1、不降智ChatGPT4o、o1、o3-mini-high

无需魔法、个人独享、同时支持手机/电脑。

在这里插入图片描述

### 修改和定制 DeepSeek 提示词指令 对于希望调整或创建特定于应用需求的提示词指令,理解并遵循某些原则至关要。当编写这些指令时,应当确保给出的是清晰而具体的指示[^3]。 #### 清晰具体的要求 为了使大型语言模型(LLM)能够按照预期执行任务,提供精确的任务描述非常要。这不仅限于告诉LLM做什么,还包括如何做以及期望的结果是什么样的。例如,在构建查询数据库的代理执行器(agent executor)时,如果`prompt`为空,则会基于上下文自动生成一个合适的提示来帮助更好地理解和操作数据[^2]。 #### 使用强化学习微调 通过采用RLHF(Reinforcement Learning with Human Feedback),可以进一步优化LLM的表现,使其更擅长处理复杂的自然语言请求。这种方法允许系统根据人类反馈不断改进其行为模式,从而提高响应质量[^1]。 #### 编写高效Prompt的例子 下面是一个简单的Python函数模板,用于生成针对DeepSeek API的有效提示: ```python def generate_deepseek_prompt(query, context=None): """ Generates a well-formatted prompt string for use with the DeepSeek API. Args: query (str): The main question or command you want to ask DeepSeek. context (list[str], optional): Additional information that may help refine results. Returns: str: A formatted prompt ready to be sent as part of an API request. """ base_prompt = f"Please provide detailed information about {query}." if context: additional_info = " ".join(context) refined_query = f"{base_prompt} Consider this background info when answering: {additional_info}" else: refined_query = base_prompt return refined_query ``` 此代码片段展示了如何构造既包含核心询问又考虑到了辅助资料在内的完整提示语句。这样做有助于引导AI产生更加贴切的回答。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哪 吒

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值