自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1258)
  • 收藏
  • 关注

原创 提示词工程实战:简单易懂的入门指南

提示词工程(Prompt Engineering)是近年来随着人工智能(AI)蓬勃发展,特别是大语言模型(如GPT-4)惊艳登场而崭露头角的一个新兴领域。它指的是设计和优化提示词,以引导人工智能生成特定类型的输出或行为。提示工程是一种新的计算机编程方式,用提示词让大模型被编程化的手段,通过对提示词进行编排和格式化,最大限度地提高目标任务的性能。

2025-05-10 09:35:49 626

原创 浅谈如何利用【提示工程】赋能你的业务场景

大模型(LLM)在25年开始出现爆发式迭代,每天一个新技术确实是连看都看不过来,更不用说更上节奏去学习了,其实这并不重要,学习任何知识第一件事就是“祛魅”,第二件事情就是“拆解它的关键要素”然后找到本质。找到本质后,学习起来就容易多了。

2025-05-10 09:31:52 638

原创 【LLM模型微调】LLMs-垂域微调-微调经验总结v2.0

在进行领域任务的SFT的时候我们通常会有以下训练模式进行选择,根据领域任务、领域样本情况、业务的需求我们可以选择合适的训练模式。

2025-05-09 14:33:06 469

原创 大模型微调(Fine-Tuning)全流程思考

大模型微调的过程

2025-05-09 14:29:04 411

原创 本地部署DeepSeek+DiFy平台构建智能体应用

在大模型实际应用落地时候,利用智能体平台,构建本地的向量化知识库,基于RAG知识增强技术和大模型的推理能力,提升效率。本文简要介绍RAG、大模型微调和大模型蒸馏的特点,通用智能体平台,并在本地部署DiFy智能体平台,利用本地部署的DeepSeek模型和知识库构建智能体应用。

2025-05-09 14:24:05 509

原创 为什么大厂都在用LangChain?一文拆解大模型应用主流开发框架!

本文主要从Why、What、How的角度,拆解目前主流的大模型应用开发框架LangChain,之后给到一个带RAG能力的聊天机器人(Chatbot)项目,来感受下LangChain在大模型应用开发方面的实战效果。假如从OpenAI 的API开始构建大模型应用的话,那么就得需要考虑这些问题。现在,有了LangChain,你可以不用特别关注那些底层的工作,专注在你的业务即可。对,就是这么简洁。官网的定义是,LangChain是一个用于开发由大型语言模型 (LLMs) 驱动的应用程序的框架。

2025-05-08 11:17:30 839

原创 RAG 的优化方案及评估

由于通用的 LLM 预训练数据存在限制,缺乏实时知识或者垂直知识,而不断地 fine-tuning又存在较大的成本。因此一种解决该问题的方式出现了。对于 RAG 的优化,下面将结合自身的实践经验以及参考的论文进行说明。使用 LLM 对 query 进行改写,使之更加规范;使用 LLM 理解query 意图并生成多个 queries 并行检索;使用 LLM 将 query 分解成多个 sub query,并进行并行检索。在查询中加入多轮对话,形成聊天引擎,多次上下文连续查询。

2025-05-08 11:15:37 510

原创 《构建和评估高级RAG》: RAG评估要素和方法

反馈函数提供了一种在应用程序运行时生成评估的编程方法,可以衡量应用程序在数据上的表现,以及用户的表现。

2025-05-08 11:13:35 442

原创 模型微调之基础篇:模型微调概念以及微调框架

之前我们一直强调,大语言模型(LLM)是概率生成系统。

2025-05-07 15:27:31 984

原创 如何微调你的第一个领域大模型?

微调(Fine-tuning)大模型,就像是给一个已经学富五车的大脑(预训练的基础大模型),

2025-05-07 15:25:04 760

原创 理解 LangGraph:为企业应用创建智能代理系统

随着企业逐渐向更智能、数据驱动的组织发展,对于不仅仅能回答简单问题的系统的需求正在迅速增加。企业不再满足于只能响应提示的AI系统,他们需要能够思考、计划和行动的系统。这些下一代系统必须能够在多步骤过程中进行协调,选择最合适的技术或数据源,检索和推理上下文信息,并在无需持续人工干预的情况下自主执行决策。

2025-05-06 19:43:44 767

原创 别再死磕大模型!专业模型+Agent才是大模型的未来之路

大语言模型(LLMs)的规模越来越大,但这并不意味着它们就更加出色。由确定性编排和基于代理的架构支持的专业模型,正为我们开辟一条更智能、更精准、更可靠的发展道路。随着大语言模型功能的不断增强,软件开发者和用户的期望也水涨船高,希望能充分利用这些新特性。然而,在追求进步的过程中,我们始终面临着一种平衡难题:每出现一个新的大语言模型,尽管在某些方面有所提升,但随之而来的是可靠性问题,比如信息不准确和所谓的“幻觉”现象。我们对模型的要求越来越高,而模型的可靠性却不断下降,如此循环往复。

2025-05-06 19:42:35 949

原创 多模态RAG:段、表、图定位解析+数字转统计图型

多模态知识可以从知识库中不同粒度的信息中获取,包括单个文档内的局部片段、文档内的跨片段引用,甚至跨文档的知识集合。因此,如何有效地解析、索引和组织外部知识库中的多模态文档,在很大程度上会影响模型对目标多模态知识的利用,从而决定端到端性能。MRAG 中的文档解析方法大致分为两种:基于提取的方法和基于表示的方法基于表示的方法不需要显式提取多模态信息。DocFormer预训练方案基于提取的方法存在一些固有的局限性1、解析过程耗时,涉及多个步骤,并且需要针对不同类型的文档使用不同的模型;

2025-05-06 19:41:48 855

原创 下一代RAG:54种RAG-大模型推理协同技术最新全面综述

(Pre-defined Workflow)和。

2025-05-05 20:22:28 695

原创 大模型微调、强化数据合成开源代表项目解析及DeepSeek-R1发布100天后的复刻总结

DeepseekR1总结,最近有个工作可以看看,题目是在DeepSeek-R1发布100天后,我们学到了什么?,《

2025-05-05 20:03:59 1026

原创 大模型推理上限再突破:「自适应难易度蒸馏」超越R1蒸馏,长CoT语料质量飞升

近期,强化学习之父 Richard Sutton 提出「经验」是下一代超级数据源的思想,将大模型强化学习的本质定义为是一种数据的动态经验流挖掘。基于此,我们团队从数据静态经验流建设的角度出发,提出基于模型自适应问题难易度蒸馏 CoT 语料的方法,显著提升了长 CoT 语料的质量。该方法围绕「模型 - 数据动态匹配」提出了一条完整的 CoT 构建流程,具有四大创新点:\1. 基于模型的固有推理能力,

2025-05-05 20:02:53 980

原创 Qwen3-代码能力非常强悍,0.6B模型竟然比Gemma4B模型还要强

你没看错,千问3(Qwen3)的这次更新不是一个模型,而是一堆模型,Dense模型一共6款,大小从0.6B到32B不等;MoE混合专家模型有两个,30B和235B。我上手就先用235B这个旗舰版测试了一下代码性能,用的是这个Prompt:目的是生成25个粒子在圆柱形的真空环境里弹跳,小球每个使用不同颜色,显示轨迹,同时还要附加一个外部的球形容器,以及缓慢的运动和视角变化,是一个很复杂的Prompt,因为它涉及到了很多方面的知识需求。这是我用。

2025-05-04 10:45:00 774

原创 不微调、不蒸馏、不掉分解决R1思维链过长(细节版)

权重地址: https://huggingface.co/tngtech/DeepSeek-R1T-ChimeraDeepSeek-R1T-Chimera模型怎么做的呢?官推原文是:他简单的结合了R1推理和V3-0324,不用训,不用蒸馏。使用了V3的共享专家,并融合了R1和V3的路由专家。我原本打算自己回归测下系数,在V3的基础上,把V3的share expert替换为对应位置的R1x+V3y,算出x和y的具体值。R1T从DeepSeek-V3-0324和DeepSeek-R1融合而来。

2025-05-03 10:45:00 1774

原创 大模型在线辅导小模型,正确率提50%、推理效率涨90%

想一下,一个刚学数学的小学生(小模型SLM),虽然做题快,但遇到复杂问题就容易卡壳。而博士生导师(大模型LLM)知识渊博,但计算成本高。论文:Guiding Reasoning in Small Language Models with LLM Assistance链接:https://arxiv.org/pdf/2504.09923v1在于:让小学生自己尝试解题,只在关键步骤(比如解方程或逻辑推理)时,导师才出手指导。这种“外挂大脑”模式,就是SMART框架的核心。

2025-05-02 10:45:00 1538

原创 财务数智化 | 场景驱动 融合创新 DeepSeek等大模型技术 推动财务数字化转型实践观察与思考

2025年1月DeepSeek-R1正式发布以来,凭借其推理能力和部署成本优势的特点迅速引起行业重视。DeepSeek-R1在推理、代码生成等领域表现优异,在降低部署成本和训练成本的同时,促进了AI应用商业模式从“算力壁垒”到“场景驱动算法普及”的转变。财务作为企业数据处理和应用的中心,伴随DeepSeek等人工智能产品不断涌现,为智能财务的管理方式和商业模式带来全新的范式。围绕大模型在财务领域的深入应用,学界认为“大模型扩展了财务管理的边界,重构了业财数据的基础”,会进而带动管理数智化革命。

2025-05-01 10:45:00 1021

原创 落地推理大模型“慢思考”的思考及DeepMath-103K推理数据集构造方案

等。例如,关于。

2025-04-30 20:14:28 1060

原创 MetaMolGen: 基于元学习的分子生成模型,擅长在少量数据和特定属性条件下设计新分子

2 型糖尿病和肥胖症是全球关注的健康问题,而胰高血糖素样肽 -1 受体(GLP-1R)激动剂是治疗这两类疾病的重要靶点。目前市面上虽然已有多种口服小分子 GLP-1R 激动剂,但它们普遍存在一些局限性,例如效力低、药代动力学特性差以及安全性问题。研究者开发了一种名为 DA-302168S (化合物 29) 的新型口服小分子 GLP-1R 激动剂,它展现出更高的体内外效力,并且降低了药物相互作用的风险。临床前研究数据表明,DA-302168S 在激活 cAMP、降低血糖和抑制食欲方面均表现出显著疗效。

2025-04-29 20:11:00 733

原创 北京大学开源论文 | 强化学习微调框架引入具身智能领域!让机器人“看懂”空间变化

视觉推理能力是人工智能迈向通用智能(AGI)的关键,但传统方法存在过拟合、认知僵化等问题。近期,来自北京大学和北京人工智能研究院的团队提出 Reason-RFT 框架,通过强化微调(RFT)与监督学习(SFT)的结合,显著提升了视觉语言模型(VLM)的推理泛化能力。Reason-RFT 的核心是两阶段混合训练策略,结合监督学习与强化学习的优势:阶段一:监督微调激活推理能力阶段二:GRPO 提升泛化能力奖励函数设计 针对不同任务定制奖励机制:格式奖励:强制模型按推理答案格式输出,提升可解释性。

2025-04-29 20:08:53 563

原创 李宏毅教授 | 2025最新AI Agent课程资料(96页PPT)

李宏毅老师的课程,还是一如既往的通俗易懂。从ML时代开始,就看过李宏毅老师的很多课件和视频,印象最深的还是他用宝可梦的元素来做类比,几页皮卡丘和妙蛙种子的简单对话,就能将晦涩难懂的概念和架构,直观地展现出来。

2025-04-28 20:08:45 971

原创 关于RAG应用中怎么高质量的进行数据召回——召回策略的研究

RAG技术的核心原理很简单,本质上就是在外部维护一个资料库,在进行大模型问答之前,先从资料库中找到相关的内容,然后一起输入到大模型中。但由于文档的复杂性,在进行文档处理时很难真正做到高质量的数据处理;因此,在做数据召回时就会面临着各种各样的问题。所以,怎么进行高质量的数据召回,就成为RAG必须要研究的一个课题;而今天,我们就来简单介绍一下常见的几种召回策略。召回策略RAG的难点主要有两个,一个是前期的文档处理;其次就是数据的召回;

2025-04-28 20:07:37 692

原创 模型活动可视化开源项目:MAV ,可以动态直观的展示大型语言模型(LLM)内部工作机制

MAV 支持用户开发自定义插件,扩展其功能。例如,通过修改可视化面板,添加新指标如困惑度(perplexity)或生成速度。相关示例在 Colab 插件开发 中提供,适合高级用户。

2025-04-28 20:06:53 792

原创 从大模型、智能体到复杂AI应用系统的构建

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

2025-04-27 10:53:37 945

原创 多模态RAG:解读检索、重排、精炼三大关键技术

多模态检索的三个关键组件包括:检索器(retriever)、重排序器(reranker)和精炼器(refiner)。可分为单/双流结构和生成式结构,每种结构都涉及单模态(例如,文本、图像)和跨模态信息检索。稀疏文本检索密集文本检索例如:BERT、RoBERTa、Poly-encoder、ColBERT等文本-图像检索例如:基于视觉语言预训练(VLP)模型,利用大规模视觉语言数据集进行联合预训练。TEAM单流模型对齐多模态token嵌入以进行token级匹配。

2025-04-27 10:52:08 747

原创 阿里发布多模态UniME:硬负样本+知识蒸馏=性能天花板,准确率暴涨27%

为什么传统模型不够用?而最近爆火的多模态大模型(如LLaVA、Qwen-VL),虽然能理解复杂指令,但它们的“嵌入表示能力”却鲜有人研究——就像学霸会解题,但不会总结考点。论文:Breaking the Modality Barrier: Universal Embedding Learning with Multimodal LLMs链接:https://arxiv.org/pdf/2504.17432论文提出了知识蒸馏流程图:普通训练用的负样本太简单(比如用“猫”匹配“狗”),模型学不到真本事。

2025-04-27 10:51:04 1034

原创 论文浅尝 | Interactive-KBQA:基于大语言模型的多轮交互KBQA

KB定义为三元组集合K∈E×R×(E∪L∪C),其中E为实体集合,R为关系集合,C为类别集合,L为字面值。给定自然语言问题Q和知识库K,目标是通过语义解析生成可执行的SPARQL查询S,即建模为条件概率p(S|Q,K)。

2025-04-26 10:45:00 689

原创 谈谈字节的Attention/Expert分离

看到一篇字节的AE分离(Attn/MoE)的文章《》 挺有趣的.文章有一个非常简单的叙事, Microbatch, 然后M:N的Attn:MoE配比并配合异构算力来降低成本.

2025-04-25 20:20:57 1023

原创 Nature子刊 | 大型语言模型在医学中的应用

大型语言模型(LLM)可以响应自由文本查询,而无需对相关任务进行专门培训,人们对其在医疗保健环境中的应用感到兴奋也担忧。ChatGPT是通过大语言模型(LLM)的精密微调产生的生成式人工智能(AI)聊天机器人,其他工具也经过类似的开发过程生成。本文概述了大型语言模型(LLM)应用程序(如ChatGPT)是如何开发的,并讨论了如何在临床环境中充分利用它们。还考虑了大型语言模型(LLM)的优势和局限性,以及它们提高医学临床、教育和研究工作效率和效果的潜力。

2025-04-25 20:19:15 909

原创 可以本地部署的 Dify

Dify 这个产品其实发布了有一段时间了。它更像一个更加成熟的 Manus ,而且不需要邀请码,并且可以本地部署。应该是很多人都知道它是一个什么样子的产品了。如果你之前已经使用过并且有一定了解了,这篇内容对你的价值应该不大。这篇文章还是主要给还没有了解的朋友做一个介绍,给大家看一个官网的截图:简单说明一下,Dify 就是一个集成了很多大模型 API 能力的工具。我们可以自己配置工作流,整合很多第三方工具。Dify 有自己的官网部署版本,你需要注册官网账号,然后使用。当然,因为它也是开源的产品。

2025-04-24 09:55:49 315

原创 一口气推出10余款医疗智能体,联影要放大招了?

智能体,这可能是今年大模型产业最热的关键词之一。一个典型的代表就是manus的一夜爆火,让整个人工智能产业意识到,将大模型能力落地形成智能体,才是应用的最佳,甚至是最短路径。在医疗领域,各家纷纷拿出大模型产品,但从目前效果看,大多大同小异,关键是尚未有场景化聚焦非常明确的案例。就在最近,联影发布了“元智”医疗大模型,并同步推出覆盖影像诊断、临床治疗、医学科教、医院管理、患者服务等多场景的10余款医疗智能体。一口气推出10余款医疗智能体,联影要放大招了?

2025-04-24 09:54:56 415

原创 三大神器对决!Dify/RAGFlow/n8n企业数字化选型指南:7大维度教你闭坑省百万

RAGFlow:复杂文档处理强,法律医疗离不了(文档复杂选它好);Dify:快速开发没烦恼,中小团队效率高(快速出活选它妙);n8n:系统集成是专长,流程自动化称王(系统打通找它帮)。

2025-04-24 09:53:17 967

原创 6000字!一文全览大模型微调方法

大模型微调,顾名思义,就是在已经训练好的大模型基础上,再进行一次“加工”。具体来说,就是利用特定领域的数据,对预训练模型进行进一步训练,让模型更好地适应特定的任务或领域。就好比一个通用的机器,经过微调后,能够精准地完成某个特定的工作任务。微调的重要性不言而喻。首先,它赋予了模型定制化的功能。不同的领域和任务对模型的要求各不相同,通过微调,可以使模型更好地满足这些特定需求。比如在医疗领域,微调后的模型能够更准确地识别医学影像中的病变特征;在金融领域,微调后的模型可以更精准地预测股票走势。

2025-04-23 20:16:30 696

原创 大模型:多种RAG组合优化(langchain实现)

这篇文档整合了多种rag优化策略,并且使用langchain实现。可以有效的解决幻觉的问题。

2025-04-23 20:12:55 566

原创 体验智能体构建过程:从零开始构建Agent

首先,我们需要一个处理用户输入的模型。我们将创建一个OllamaModel类,它与本地API交互以生成响应。

2025-04-22 10:44:26 814

原创 [论文分享]Nature 2025 通过反向传播语言模型反馈优化生成式AI

最近,在人工智能(AI)领域的突破越来越多地依赖于由多个大语言模型(LLMs)与其他专用工具协同工作的系统。然而,目前这些系统主要由领域专家手工设计,并通过启发式方法进行调整,而不是自动优化,这在加速人工智能发展方面构成了重大挑战。人工神经网络的发展曾面临类似的挑战,直到反向传播和自动微分的出现,使得优化变得自动化,从而彻底改变了该领域。类似地,本文引入了TextGrad:一种通用框架,它通过对LLM生成的反馈进行反向传播来优化AI系统。

2025-04-22 10:42:59 666

原创 智能AI电子病历系统产品设计解析:从政策到落地的实战

智能AI电子病历系统(AgentEMR)是医疗数字化转型的核心工具,其设计需兼顾临床需求、政策合规性和技术可行性。智能AI电子病历系统在实现病历数据的实时更新和共享时,不受时间和空间的限制。医生可以随时随地获取和使用病历数据,提高诊疗效率。并且利用AI技术自动提取、分析和解释病历数据,减少医生的操作负担和错误率。此外,智能AI电子病历系统通过数据挖掘和预测分析的功能,可以根据病历数据中的规律和趋势,提供个性化的诊疗建议和健康管理方案。

2025-04-22 10:42:03 1103

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除