Deep Learning (Yoshua Bengio, Ian Goodfellow, Aaron Courville) 翻译 Part 2 第6章

《深度学习》一书中详细介绍了深前馈网络(也称多层感知机),这些网络是深度学习的重要模型,用于函数拟合,如分类问题。文章探讨了网络结构、激活函数、损失函数和反向传播算法,通过学习XOR问题和不同输出单元的示例,阐述了神经网络如何处理非线性关系和不同类型的输出分布。此外,还讨论了基于梯度的学习方法和成本函数在训练过程中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

http://www.deeplearningbook.org/

第6章 Deep Feedforward Networks

Deep Feedforward Networks也被称为feedforward neural networks或multi-layer perceptrons(MLPs),是十分重要的深度学习模型。Feedforward Networks的目标是拟合一个函数f*,比如一个分类器,
y=f*(x)把输入x映射到类别y,Feedforward Networks定义一个映射函数y=f(x;Θ)然后让Θ学习以得到最好的函数拟合。

这种模型被称为feedforward因为要拟合的函数信息是从 x通过计算输出y 得到的,没有从输出的feedback,如果feedforward neural networks包括feedback连接,那么就会被称为recurrent neural networks(第十章会讲)

feedforward neural networks模型由 有向无环图(DAG) 来表示它由哪些函数组成,比如我们现在有三个函数f1,f2,f3,连接成一个链,来形成f(x)=f3(f2(f1(x))),这种链式结构是最普遍应用的神经网络,在这个例子里,f1被

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值