http://www.deeplearningbook.org/
第6章 Deep Feedforward Networks
Deep Feedforward Networks也被称为feedforward neural networks或multi-layer perceptrons(MLPs),是十分重要的深度学习模型。Feedforward Networks的目标是拟合一个函数f*,比如一个分类器,
y=f*(x)把输入x映射到类别y,Feedforward Networks定义一个映射函数y=f(x;Θ)然后让Θ学习以得到最好的函数拟合。
这种模型被称为feedforward因为要拟合的函数信息是从 x通过计算输出y 得到的,没有从输出的feedback,如果feedforward neural networks包括feedback连接,那么就会被称为recurrent neural networks(第十章会讲)
feedforward neural networks模型由 有向无环图(DAG) 来表示它由哪些函数组成,比如我们现在有三个函数f1,f2,f3,连接成一个链,来形成f(x)=f3(f2(f1(x))),这种链式结构是最普遍应用的神经网络,在这个例子里,f1被