总结了几篇区块链与云技术的论文,之前一直在草稿箱,现在用不着了,分享一下吧
A Software Defined Fog Node Based Distributed Blockchain Cloud Architecture for IoT(解决了什么问题)
Background:
数据的大量增加,云没有有效的存储方法
各种性能的提升需求
method:
this paper proposes a novel blockchain-based distributed cloud architecture with a software defined networking (SDN) enable controller fog nodes at the edge of the network to meet the required design principles. The proposed model is a distributed cloud architecture based on blockchain technology,
提出了一种新的基于区块链的分布式云架构,该架构采用软件定义网络(SDN),使得网络边缘的控制器雾节点能够满足所需的设计原则。该模型是基于区块链技术的分布式云架构,
main idea:
1、’整体模型运行过程:
云与雾结点可以offload
雾结点通过BSs(基站)与设备进行连接
2, DISTRIBUTED BLOCKCHAIN CLOUD ARCHITECTURE
过程:选出资源提供商
提供服务
记录在BC并且share
奖励
用到的技术:
proof of servic:use 2-hop blockchain tech
资源匹配(算法):找谁来提供资源
调度算法
3: EDGE COMPUTING NETWORK ARCHITECTURE:
4:性能在吞吐量,响应时间,延迟引起的性能指标都有提升
conclusion:
本文提出了一种新的分布式区块链云架构模型,以满足有效管理分布式云和网络边缘大型物联网设备产生的原始数据流所需的设计原则。它基于三种新兴技术:雾计算、SDN和区块链。提出的体系结构旨在支持高可用性、实时数据传输、高可扩展性、安全性、弹性和低延迟。为了方便物联网服务的提供,与传统物联网架构相比,该架构可以显著降低核心网络中物联网设备、计算资源和流量负载之间的端到端延迟。我们的性能评估结果清楚地表明,与传统的基于核心的云计算基础设施相比,我们的模型是将数据卸载到云上的更有效的解决方案。文中还证明了该模型的有效性和有效性,它以最小的开销满足了所需的设计原则。在未来,我们将探索我们提出的物联网边缘设备间节能通信模型的各种能量收集技术方面。
Blockchain-Enabled Security in Electric Vehicles Cloud and Edge Computing
问题的提出:
EVCE计算是一种具有吸引力的网络模式,它涉及到异构车辆环境之间的无缝连接。随着EVs在V2X中的普及,它将成为一种趋势,EVs作为信息和能源交互的潜在资源基础设施,在云计算和边缘计算的混合应用中面临着严峻的安全挑战。根据信息和能量相互作用的观点来识别上下文感知的车辆应用。基于分布式共识,提出了基于区块链的数据币和能量币,利用数据贡献频率和能量贡献量来实现工作证明。提出了在EVCE计算中保护车辆交互安全的解决方案。
贡献:
结论本文重点研究了EVCE计算中信息和能量交互的安全问题。根据EVs的不同角色,提出了上下文感知的车辆应用;定义了区块链启发的数据币和能量币,以达成分布式共识;应用数据贡献频率和能量贡献量进行验证确定。提出了云计算和边缘计算的安全方案,以启动车辆应用的前景。
整体结构:
1、Network Architecture and Context-aware Applications Network Architecture
基于四个不同的角色
2、实现共识的方法:
data coins and energy coins are defined as new cryptocurrency for vehicular applications.
The data coins and energy coins are only exchanged among EVs
The established data coins and energy coins can be applied for vehicular resources allocation
When Mobile Blockchain Meets Edge Computing
问题的提出:
1、 IoT devices are usually low-power, geographically distributed, and possibly mobile. Limited computing resource and energy supply of IoT devices become major barriers when blockchain is applied to IoT systems, specifically because of the mining process.
物联网设备通常是低功耗、地理分布的,而且可能是移动的。当区块链应用于物联网系统时,物联网设备有限的计算资源和能源供应成为主要障碍,特别是由于采矿过程。
2、挖矿定价的问题
贡献:
multiple access mobile edge computing appears to be an auspicious solution to solve the proof-of-work puzzles for mobile users. We first introduce a novel concept of edge computing for mobile blockchain. Then we introduce an economic approach for edge computing resource management. Moreover, a prototype of mobile edge computing enabled blockchain systems is presented with experimental results to justify the proposed concept.
我们首先介绍了移动区块链边缘计算的新概念。然后介绍了一种边缘计算资源管理的经济方法。此外,本文还提出了一个支持移动边缘计算的区块链系统原型,并给出了实验结果,以证明所提出的概念是正确的。
Prototype of Edge Computing for Mobile Blockchain:
Interactions among edge computing service providers and IoT devices or users can be modeled as market activities, where the providers sell resources such as data and computing power, generating revenue from IoT users.
边缘计算服务提供商与物联网设备或用户之间的交互可以被建模为市场活动,在市场活动中,提供商出售数据和计算能力等资源,从物联网用户那里获得收入。
(miner与provider)
Edge Computing Resource Management for Mobile Blockchain
用了博弈论的斯塔克伯格模型:
该模型的假定是:主导企业知道跟随企业一定会对它的产量作出反应,因而当它在确定产量时,把跟随企业的反应也考虑进去了。因此这个模型也被称为“主导企业模型”。
provider先发价格,miner根据此价格与挖矿的好处来进行评估,来考虑是否用provider提供的算力,provider通过卖算力获取利润。
总结:
In this article, we have introduced edge computing for mobile blockchain applications, especially for IoT blockchain mining tasks offloading with a demonstrated testbed and experimental results. Then, for efficient edge resource management for mobile blockchain, we have presented a Stackelberg game model. We have also conducted the numerical simulations to evaluate the network performance, which may help the edge service providers achieve optimal resource management policy and profit.
在本文中,我们介绍了移动区块链应用的边缘计算,特别是物联网区块链挖掘任务转移,并给出了一个演示的测试平台和实验结果。然后,为了有效地管理移动区块链的边缘资源,我们提出了一个Stackelberg博弈模型。我们还进行了数值模拟来评估网络性能,这可能有助于边缘服务提供商实现最优的资源管理策略和利润。
Blockchain: A Panacea for Healthcare Cloud-Based Data Security and Privacy?(水了)
问题:
根据各类设备测出的病人的信息是否可信?
出故障而导致不准确,出现事故时的责任是谁负责?
解决方法:
云技术,将病人信息传到云上,可以觉得地域差异,方便查寻
问题:
云上的安全性如何保证
解决:
区块链技术
区块链的限制性:
1.如果遇到需要系统重做,区块链重新修复工作量大
2.根据国家法律要求不同,开放程度不同,难以统一
3.法律规定,用户可要求删除个人的数据,但区块链不可改
4.医疗数据的存储信息太大,区块链设计的初衷只是存一些小交易
解决方法:
off-storage of data:
将数据存到线下的数据库,链上存储哈希值
问题:
随着隐私性的增强,元数据也慢慢变为个人的隐私。
元数据即描述数据的数据,也就是本文中采用的信息的哈希值。
Consensus Protocols for Blockchain-based Data Provenance: Challenges and Opportunities(水了)
背景:
区块链由于其通过不变的共享分布式账本增强安全性和隐私性的能力,最近引起了极大的兴趣。 区块链检测完整性违规的能力对于在云平台中提供有保证的数据来源特别重要。 区块链的实际采用将在很大程度上取决于达成性能和安全性保证的共识协议。
贡献:
我们提出了基于区块链的云数据来源框架。 我们发现在此框架内采用工作量证明共识协议存在性能和安全性挑战。 在为云平台中的数据来源开发权益证明时,我们提出了独特的设计挑战和机遇。
内容:
1、pow可能存在的问题:
Selfish mining
自私挖矿是一种减慢网络并减少挖矿难度的一种技巧。这种攻击会削弱诚实矿工的盈利能力,而在难度调整之前,这也会对自私矿工本身带来不利影响。而只有在难度调整之后,自私挖矿才会变得有利可图。自私挖矿是针对比特币协议的一种攻击,
51% majority manipulation
Consensus delay
Blockchain fork
De-anonymization(去匿名性)
解决方法:
POS
问题:
it is challenging to adopt this form of PoS in blockchain based cloud data provenance framework because the resources in cloud do not exhibit highly correlated characteristics with the tokens of cryptocurrency domain.
在基于区块链的云数据源框架中采用这种形式的PoS是一个挑战,因为云中的资源与加密货币域的代币没有表现出高度相关的特征。
云的追溯存在的问题:
云的追溯需要记录一大批出处的目录日志,是一些繁重的工作;存储出处以及查询费用太高;缺乏透明性。
方法:
区块链,提出了区块链云的模型
作用:
Cloud Data Provenance:、Proof-of-Stake Validation 、 Tamper-proof Environment、Provenance Data Validation
Cloud User:共享资源,提供共识
Cloud Service Provider (CSP):云存储/计算,用户注册
Provenance Database:存储数据出处,隐式匿名来保护隐私
Provenance Auditor (PA):验证维护数据,作为查询的中介
Blockchain Network:由云用户构成,多跳拓扑
Federation Service:资源控制,股权分配与验证,选择出领导者。
根据CPU算力、分配的容量、网络性能做一个函数来证明POS 的stake;
待解决的挑战:
…………………………
Secure Cloud-Based EHR System Using Attribute-Based Cryptosystem and Blockchain
问题:
随着电子病历的普遍,为了解决数据的保密性、可认证性、数据完整性以及支持数据分享等问题
存在云上的数据难以保证安全性。
贡献:
整体提出了一个电子病历云,用了区块链与基于属性加密算法等
具体方法:
1、用基于属性加密和基于身份加密的方法对数据进行加密,用基于身份签名算法进行签名;
为了实现三种不同加密算法在一个加密体系里,定义了一个新的体系叫C-AB/IB-ES;
It comprises a tuple of algorithms (Setup, KeyGen, Encrypt, Decrypt, Sign, Verify), such that (Setup, KeyGen, Encrypt, Decrypt) forms ABE or IBE scheme and (Setup, KeyGen, Sign, Verify) forms IBS scheme.
并且用The security game (IND-CPA for IBE/ABE)和The security game (EUF-CMA for IBS)来定义了模型的保密性和不可为造性。
2、Secure cloud-based EHR system
用BC(联盟链)来确保数据的可追溯性和不可更改
由KGC分发秘钥,用户将自己的病历授权给医院,医院进行加密并签名加入池中,各节点共识验证签名正确性,将进行存入云中,并获取云中地址与信息描述信息一同记入区块链;不同用户可根据用户浏览并解密相应的数值。
3、保险实例:
问题:
用户可手动篡改病历来获去获取保险
用模型解决
分发秘钥,用户授权,加密签名入池,验证上链入云,保险公司符合用户指定的属性,用秘钥解密理赔。
展望:
可以用只能合约实现自动理赔,无需保险公司。
4、总结:
提出了一个云模型+加密+区块链
为了实现多种加密组合提出了C-AB/IB-ES体系
区块链用了联盟链
BBDS: Blockchain-Based Data Sharing for Electronic Medical Records in Cloud Environments
问题:
关于健康的信息泄露产生不好的影响,解决数据安全分享的问题
提出用区块链进行解决,只有特定的用户才可以进入。
贡献:
提出了新颖的用户加入的安全秘钥算法
设计了一个基于区块联动额数据分享模型,提出了更轻量级的块能加了性能。
Cryptographic Keys(加密秘钥)
Membership issuing Keys:加入系统时的秘钥
Membership verification Key:用于生成用户的私钥并验证用户合法性
Membership private key:创建请求
Transaction private key进行数字签名
Transaction public key:验证数字签名
系统结构:
系统的运行过程:
1、系统启动环节:
user | issuer |
---|---|
传递request | 验证身份并返回一个Membership issuing key (传给verifier membership verfication keys) |
传递一个membership key + generated tag | verification key+some parameters |
using parameters generate tx private/public key |
user | verifier |
---|---|
membership verfication key(for membership verification) | challenge |
request for challenge | membership private key |
transaction private key | store the tx public key |
2、创建块用membership private key 并且用tx private key进行签放到交易池中。
总结:
在本文中,我们提出了一种基于区块链的机制,用于在用户和共享(敏感)数据池之间进行中介访问。与比特币区块链网络相比,我们构建了一个可扩展(重新设计以允许快速交易)和轻量级区块链,以证明我们设计的高效性,该设计允许以安全的方式共享数据,并保护数据的隐私。在所提出的系统中,实体之间的通信和认证协议及算法没有得到充分的研究。通过在未来的研究中对这些问题进行充分的探索来扩展这项工作是很有意思的。我们声明,本文所描述的架构是基于区块链的访问控制系统的顶层,正在实施和测试中。在今后的工作中,我们将进行一项实验研究,以提高系统的效率,并获得进一步研究的经验数据。
Blockchain and Federated Learning for Privacy-preserved Data Sharing in Industrial IoT
问题:
随着数据容量的迅速增加,工业物联网在无线网络的数据安全和隐私保护成为主要的问题
方法:
提出了一个基于区块链的架构,并将联邦学习加入进而保护隐私(通过共享模型而不是共享原始数据),分布式多方数据检索来防止数据的泄露,POW耗费资源,提出了POQ 基于训练质量的验证。
模型工作流程:
边缘的LOT设备被称为超级节点有自己的算力,区块链上只允许存放检索交易和数据共享交易。如果有用户有一个request,与其最近的超级节点会先访问区块链,查询是否之前有此request,如果有则从缓存给其结果,若是一个新的request,则用多方数据检索技术去找到相应的party,然后在此区域中选出社区结点来进行模型的计算并实现共识。
运行过程:
1)初始化:在数据提供者Pi加入之前,执行基于Jaccard相似度的局部聚类,将其文本数据聚类到不同的类别中。我们将关键项按一定顺序序列化为向量,以表示类别。两个数据集越相似,它们之间的距离就越近。然后,其附近的超级节点(Pi所属的超级节点)将搜索区块链,以找到逻辑上与之接近的记录(根据XOR距离)。对于每个参与者,我们基于散列向量生成其ID,以确保持有相似数据集的参与者具有相似的ID。此外,为了提高计算效率,我们通过运行一个社区划分过程来预先划分参与者,其中所有节点根据彼此之间的距离被划分成不同的社区。
2)注册检索记录:Pi加入后,首先将其公钥PKr及其数据配置文件发送到附近的超级节点进行注册。然后生成Pi的数据检索记录,并由节点广播到许可区块链中的其他节点进行验证。其他节点收集所有接收到的记录并在将其写入许可的区块链之前进行验证。
3)启动数据共享请求:数据请求者向其附近的超级节点SNreq发送数据共享请求Req={f1,f2,…,fx}。请求请求包含r的ID、请求的数据类别和时间戳,由r用其私钥SKr签名。
4)数据检索:附近节点接收到数据共享请求后,验证请求者r的身份,然后搜索许可的区块链,确认请求是否已经处理过。如果有记录,缓存的模型将作为答复返回。否则,它会运行多方检索过程来查找相关方。
5)数据模型学习:相关方协同响应共享请求。他们运行联邦学习来训练面向请求请求的全局数据模型M。训练集基于本地数据D和相应的查询结果fx(D),DT=<fx,fx(D)>。然后,学习全局模型M作为应答返回给请求者,并由本地节点缓存以供将来的请求使用。
6)生成数据共享记录:数据请求者和数据提供者之间的数据共享事件以事务的形式生成,并在许可的区块链中广播。所有记录都被收集到块中,这些块由收集节点加密并签名。
7)执行一致性:结点共识上链
小问题:
1、’由于设备的计算能力和存储有限无法维持与输出结构化的数据,所以提出了一个textual data,用一个权重图来存储信息,然后存入矩阵并压缩用距离函数计算其相似度,用K-means方法聚类
2、如何将新的请求如何找到与之最匹配的数据,就是根据参与者的信息分为多个社区,同一个社区内的参与者有着最相似的数据,当发送一个请求时,社区内的结点会通过一个距离算法来选出共识结点,通过联邦学习进行建模返回。
3、POQ的好处是可以更有益于保护隐私,更有效地处理请求,更好地利用边缘设备的资源。。其中有两个比较突出的技术,一个是差异私有联邦学习,即在联邦学习加入了差异私有保护 :每个party选择相应处理的请求数据,首先将他们进行格式化处理成矩阵向量,不同的P构建训练自己的模型,并广播传到下一个party,最后所有模型合成M。
问题是结点太少容易被攻击所以提出了一个基于共识的训练质量模型,定义了一个MAE表示准确度,通过MAE选出leader,它先收集所有的交易并建立块,其他结点对交易进行验证 ,误差在一个范围则表示同意,都同意后才可以存储在链上。
A Blockchain-based Approach for Data Accountability and Provenance Tracking
概述:
本文针对GDPR的新要求,分析了采用基于区块链的合约方法支持数据责任和来源跟踪的可行性。我们讨论了几种解决方案设计选择,并介绍了三种不同的模型,包括两种具体实现,并我们表明,对于交换频率较低的更敏感数据(如医疗数据),一种更细粒度的解决方案(其中受试者与每个控制器和处理器创建契约)更为充分。另一方面,对于交换更频繁、可扩展性和性能要求更高的动态数据,控制器或处理器应管理一个合同,该合同注册所有接受全部或部分数据使用条件的主体。(P3P)
三种模型:
Data subject contract for specific controller:
subject 产生一个合约给每一个controller,来跟踪约束自己提供的数据
Data subject contract for specific data
subject 为每一个数据实例产生一个合约,并分享给每一个使用它的controller
Controller contract for multiple data subjects:
controller产生一个合约,如果subject想注册就得遵循此合约,类似于P3P平台。
两种实现:
1、细粒度的数据(交换低的敏感数据):Subject Contract Model
此模型中的合同充当数据来源跟踪程序、策略评估实体和事件记录器,允许主体轻松检查所有数据传输和使用事务,确保只有符合合同策略的事务才在区块链中授权和注册。
subject 与 controller交互:
subject在数据控制器注册,为该控制器创建自定义协定以规范其数据的使用,并将数据传输到控制器。对于每个新建立的合同,subject使用一个新的区块链地址来防止与每个控制器建立的合同的可链接性,要求subject维护所有使用的地址列表以及与每个控制器或处理器建立的相应nonce。创建合同后,subject将数据传输给控制器。
subject 与 processor交互:
控制器将数据传给处理器之前,产生一个事件,此事件包含一个只有controller知道的地址和只有subject可读的加密格式
subject 为processor建立一个新的身份
subject创建一个新的合约,产生相应nonce
合约创建后传输数据。
改模型的隐私性有第三方可信机构来证明其数据可信
2、Controller Contract Model(粗粒度的数据):解决经常交换的数据
在这一部分中,我们描述了本文提出的更粗粒度的数据责任和来源跟踪模型。在此模型中,控制器或处理器创建一个协定,指定对从与控制器注册的所有主体获取的任何显式或隐式数据的使用和重新分发的共享约束。此模型中的合约只是作为可配置策略模板的存储库,这些模板将为所有主题实例化,并且除了主题列表之外不存储任何内容。交易只是主体加入或退出合同的请求。
大致意思是Processor与Controller共同管理一个合约,同意合约的subject可以加入注册。
本合约所需的gas量要少得多。合同的建立,数据主体的加入和退出都需要少量的gas。合约不需要任何其他操作,因为它不记录任何数据使用事件或强制操作。
Enforceable Data Sharing Agreements Using Smart Contracts
背景:
数据共享过程中,由律师签约保证安全性
方法:
提出了基于区块链的智能合约模型以及第三方的投票惩罚机构,其允许分散数据存储,支持细微差别的身份验证和授权,合同可以自我销毁不占用区块链的地址空间,低消耗
大致工作流程:
数据提供者P将自己的地址存储在云上,随时监听需求
Q通过地址向P发送信息并商讨合约内容
产生一个智能合约(内容按需求链下进行),Q需要支付一部分费用来启动合约
请求者Q发送需求
P将Q的地址和详细信息传给云
云用Q的公钥进行数据加密产生一次性的link(用key加密了的哈希数据)给P
P将link给Q并用自己的私钥加密对key加密
Q收导link后先用P的公钥解密Key,再用自己的私钥解密link,
用key进行数据解密,link失效.合约可在双方同意下提前销毁
违约处理:
如果任何一方怀疑在数据共享协议的有效期内存在违约行为,他们可以调用数据共享合同并生成一个投票合同来调查违约行为。
通过区块链上的冲裁人(可信机构,没说如何选)查看并进行投票决定。
conclusion
随着数据对企业、政府和研究越来越重要,需要找到更好、更有效的方式来共享这些数据。尽管数据共享是必需的,但为了满足隐私、安全和法规要求,数据提供商需要详细说明共享发生的条件。这些数据共享协议的规范和执行过程都是由律师通过诉讼手动完成的。我们提出了一种使用智能合约和区块链技术自动跟踪、管理和特别执行此类数据共享协议的方法。我们的框架根据类似于法律数据共享协议中的参数生成智能合约。本协议中的条款由系统自动执行,并且可以使用安全投票进行货币惩罚。我们有兴趣探索未来的几个步骤。为了增加对我们框架的信任,我们需要能够验证智能合约,并证明它们做了数据共享方期望的事情。我们也在研究易于理解的语言和模式,这些语言和模式可以编译成可靠的智能合约。我们希望修改我们的Web前端,以接受用这些语言编写的数字签名协议,提取相关条款并生成适当的智能合约。这不仅会使可验证性更容易,而且会使端到端的自动执行框架更容易实现。
Using Blockchain and smart contracts for secure data provenance management
由于大量数据的增加而产生的安全问题,提出了一个安全模型,用区块链智能合约来数据来源的管理
架构的设计:
设计了DataProv的整体架构分为链上模型和链下模型
链下模型:
客户接口模型:提供用户和后端合约的接口,隐式地为用户的操作提供签名
事件监听模型:监听验证更改事件是否与本用户相关,,用户不用一直在终端等待投票,由此模型代为投票
时间模型:投票开始前确定投票的时间长短
验证模型:验证是否更改有效,通过输入最近确认文件与未确认文件的hash值以及未确认文件的link,来比较是否更改有效
链上模型主要包括document tracker Contract 和 vote contract
document tracker Contract :
用来keep所有的文件改变的track,维护用户访问的信息并对可以查找指定文件的出处。以日志的形式存储track和发起者基于文章摘要的签名。
vote contract:
记录了两种不同的投票方法的实施
整体投票过程是
提出更改请求,启动时间模型timer,vote contract初始化一个event来证明投票的开始,客户端启动监听模型监听到后进行验证,验证者通过验证模型进行投票,若投票成功则更新到document tracker Contract。因为在验证过程中,如果在链上进行验证,则需要保护 用户隐私,用零知识证明的方法(未实现),所以支持用户链下进行验证然后链上进行投票。
两种投票的方式:
Majority voting:
所有的人都参加投票,少数人服从多数人的投票方式。适用于人少的情况。
Randomized Threshold voting :
随机设计一个门限值s,随机找人进行投票,但为了保证投票的人数至少为s,所以选定投票人数为t,而t>s
每个用户计算一个hash Ks,若ks<t则可以参与投票
conclusion:
DataProv是一个基于区块链的系统,它提供基于访问控制的隐私保护数据来源跟踪。在DataProv系统中,授权用户可以验证对任何数据文件所做的更改。它还提供了使用数字签名和时间戳的更改证明。系统确保区块链环境中的更改日志仅被具有适当密钥的授权用户访问。DataProv系统通过对记录/捕获的变更轨迹和任意d进行随机投票,进一步增强了数据轨迹的可信度。
Block-secure: Blockchain based scheme for secure P2P cloud storage
Q:
用云存储数据时如果用传统加密方法加密,则开销会很大;
中心化
传输延迟
如何把文件随机存到最近的网络结点
M:
基于区块链的新的架构
遗传算法解决如何在多用户多数据中心的云存储架构中文件副本的放置问题。
架构:
将用户的文件等分成相等大小存入块,用ECC和ECDSA进行加密和签名,然后上传到P2P网络中,每个交易存储的是文件的Hash和URL地址。验证由默克尔树验证。当用户想要验证数据正确性时,先根据自己的信息在链上回溯交易,然后通过交易内的地址找到本地地址。
因为每个块都是随机存储,需要解决一个容忍错误的问题,用到了文件副本作为数据冗余。副本数量由算法跟性能决定。文件的分布式随机的,文件副本则随机存储在存储文件附近的结点。
基因算法大致步骤:
找到目标文件与二进制的映射关系
算适应度
选择算法
交叉:互换几位二进制数
变异;等位替换二进制数据
假设一个块包含n个副本,则映射成一个nbit长的字符串,1表示需要,0 表示不需要
用a = log2|数据中心|位二进制表示数据中心,|文件副本|*a二进制位表示一个块中副本分布策略
………………
我们提出一种验证方法来验证解决方案是否有效,并消除无效的解决方案。对于需要文件块bi的用户ui,从ui到bi只有一个映射。同时,在同一数据中心中存储多个文件块副本是无效的,因为这会浪费存储空间,增加网络冗余。
Blockchain-Enabled Data Collection and Sharing for Industrial IoT With Deep Reinforcement Learning
问题的提出:
1、随着移动设备的增强,我们可以用移动设备来获取信息,但是移动设备受能源和地理位置影响,使收集的数据可能质量不高。
2、数据分享的安全性
解决方法:
第一个问题用深度强化学习解决
第二个问题用区块链解决
所以设计出了一个新的模型将区块链跟DRL相结合
实现的目的是在保证安全的前提下,使得收集到的数据最大化。
概述:
物联网有多个设备,每个设备都需要定时充电,把工作时间定做一个round,每个round再分为多个timeslot。
1、DRL:
应用场景是分布式的持续多方的数据收集,所以传统的梯度DRL不适用,所以提出了一个新的模型。
每个 m 生成一个observation作为state的一部分,通过对其进行实施action,然后根据回馈的reward,通过给定一个状态和action 目标是获取一个最大累积奖励,从而实现一个最理想的数据收集模型。
2、用区块链实现数据分享的安全性
移动设备m首先根据安全系数在CA里注册获取一对秘钥,CA将公钥和id存储从而完成注册,在每一个round里的每一个timeslot m进行数据的获取,将信息存储为Hash后去CA进行验证,若验证成功则CA对其进行签名,最后将hash传到区块链上。
conclusion:
本文提出了一种高效数据采集和安全数据共享的联合框架用于支持IIoT场景的MCS (多个移动设配置一个云服务器)Ethereum区块链和DRL。
我们提出了一种新颖的、全分布的DRL方案,帮助每个MT感知附近的PoIs,以实现最大的数据收集量、地理公平性和最低的能源消耗。然后,使用区块链在MTs之间共享数据,以确定它们的安全级别。
Data Security Sharing and Storage Based on a Consortium Blockchain in a Vehicular Ad-hoc Network
问题:
传统车联网缺乏自组织的传输能力,集中存储容易受到攻击,传输效率和开销有待加强,传输安全性的保证。
解决方法:
可利用数字签名技术(ECC)来保证结点下载敏感数据的安全性;
用区块链技术实现安全性;
利用智能合约实现自组织,合理分配RSU之间的资源;
PBFT共识机制增加了交易传输的速度
概述:
此结构里,所有结点被分为PSNs和 SNs,前者表示选做实现共识的结点,后者为普通结点。
消息传递的方式有V2V,通过单播或多播+签名
若在车少的地方,V2R可解决延迟问题
R2R通过有线传输,可以使不在某RSU范围内的汽车受到此RSU的信息
data security sharing and storage system based on the consortium blockchain (DSSCB):
工作流程
激励措施:采用数据币的方式,根据结点的数据贡献频繁程度来定义优先级。
SeShare: Secure cloud data sharing based on blockchain an public auditing
问题:
在数据共享的过程中,可能存在这样一种情况就是同时有两个用户对同一数据进行更改,会导致签名冲突。
M:
提出了Seshare来保证签名的唯一性;
以时间顺序村粗签名在区块链中;
提出了一个高效的审计方案来保证共享的安全性;
贡献概述:
SeShare:为了提供给用户一个安全有效的数据分享环境
一组用户+一个管理员共享一个云服务器,auditor是由一组用户或者计算能力很强的服务器组成,用来检测存到云上文件的完整性。auditor不知道具体内容,通过云的proof来确定是否符合。
……………………………………
用户需要上传数据时:
用户向auditor发送一个请求去验证文件的完整性
auditor向云产生一个challenge message
云产生一个proof给auditor
auditor验证proof后将结果给user manager
…………………………………………
每个云中的数据存在一个块上,更新时产生新的块
组用户将文件上传到云。然后,云检查它是否已被放入云。如果文件是惟一的,则云将其存储在云中,并生成与此文件相关的块,这样确保云中的数据是唯一的。
……………………………………………………
解决多个文件同时更新的方法就是检查它的父节点id是否符合链上的最近的那个id,先到先得。
………………………………………………
用户离开:
首先user向group manager 发送自己的pk
manager 找出所有与user相关的文件,请求auditor进行检查
auditor 发送一个挑战给云
云发送一个proof给auditor
auditor根据proof进行正确验证,返回给manager
manager决定用户是否可以离开。
conclusion:
提出了一种面向车间等数据共享环境的安全数据共享方案SeShare。通过使用区块链数据结构,接受较早的修改,丢弃其他修改,从而解决了文件修改冲突的问题。我们还使用聚合加密来支持文件唯一性并减少存储开销。为了实现对用户离开的有效审计,提出了批量审计。
Blockchain based Proxy Re-Encryption Scheme for Secure IoT Data Sharing
问题:
云中心化扩展性太差,第三方服务提供者的信任问题。
贡献:
1、基于区块链(以太坊)和代理重加密来保证数据的保密性
2、智能合约实现财务交易的自动化
3、只能数据拥有者和智能合约的参与者可以对数据访问
概述:
sensor首先在区块链上进行注册并返回加密需要的参数,然后对收集到的数据进行加密并传到云上。当某个请求者与传感器拥有者达成协议后,会在区块链上形成一个智能合约,云存储器进行数据筛选存储,并将数据的地址存在区块链上。
区块链与多重签名结合:
多重签名:
A先用对称加密加密一段C1上传到云,再用自己的私钥对对称加密秘钥加密C2上传到云,请求者B将自己的公钥传给第三者,第三者用自己的私钥与B的公钥进行多重签名算法计算,生成新的秘钥,用这个秘钥重新加密C2,只能由B解开,B解开获取对称加密秘钥,解开C1。
注册以太坊时会用ECC产生一对秘钥,上传数据用私钥进行签名,re-encryption key rkab 由传感器进行生成分享给云并进行hash签名分享到区块链上
云服务器用rkab 加密密文并传到云上,请求者解密并验证签名。
Q:(多重签名的计算到底是谁做的,如果是传感器,那可以直接用对面的公钥进行加密,如果是云,则云不信任,私钥也泄露。)
Cloud/Fog Computing Resource Management and Pricing for Blockchain Networks
用博弈论实现了CFPs与Miners之间的交互,提供了一个基于POW的的区块链系统。
并提供了一个基于两阶段的定价系统(Stackelberg博弈论)
两层定价系统:
Secure Authentication‑Management human‑centric Scheme for trusting personal resource information on mobile cloud computing with blockchain
背景:
移动设备提高工作效率,但是存储计算能力有限,为了解决计算存储能力一般有两个方法一个是外部云服务,另一个是利用资源管理的办法,而不借助外部云,称为MRM,其方法是集合一定区域内的移动设为的存储资源和计算资源。
M;
提出了SAMS,来保证加入MRM池的安全性。SAMS本身集合了区块链技术,最主要的功能就是如何判定加入MRM设备的安全性。
刚开始的设备称为master node 先创建一个块,如果有一个设备想要加入,则它自己先创建一个块,将自己的信息和块一起传到主节点,主节点根据信息创建块,比较相同则连接,连接后用户验证是否正确
如果有多个结点想加入,则创建块并广播,51%同意则连接。
Blockchain based efficient and robust fair payment for outsourcing services in cloud computing
解决的问题:
用户与外包商之间的信任问题
工作了给钱?
给钱不工作?
刚开始提出的是第三方认证------>隐私泄露的问题------->区块链技术BCPay模型来防止恶意用户和恶意外包商
主要贡献;
1、BCPay的实现、2、奖惩机制的完善 3、两个应用
工作概述:
C初始化参数传给S一个sv
sv在S强制执行,S根据信息生成一根M树,产生一个签名签在m树的根并将签名存在区块链,S发送C一个确认信息,含有交易的ID,C找到链上的hash与自己计算的hash比较来证明sv已经可以被C来验证了。
C与S提供押金共同达成一致协议,C向S发送一个挑战,为了防止恶意服务商,S方提供一个Comments来保证安全性。S可用挑战proof和签名来获取奖励。
为了提高效率,在BCPay中事务数量是恒定的。
创新点:
C与S共同实现
健全性:结点诚实可以得到奖励
健壮性:恶意结点不会获得好处
S,C共同将押金创建InintTx,如果诚实S可以用自己的签名与proof来获取奖励,诚实的C可以用自己的签名和S提供的rs来退回
如果S没能完成proof并且拒绝提供rs,则C无法获取补偿,—S需要提供一个Comment协议来规定提供proof的时间
第一个问题就是S提供给C这个rs,一般是在S获取到奖励后,防止监听攻击。
俩应用:
PDPservice(云节点)
基于区块链的外包:BCOC(雾结点)
A Blockchain-Based Framework for Data Sharing With Fine-Grained Access Control in Decentralized Storage Systems
Q:
数据存储的中心化问题
分发秘钥的中心化问题,私钥产生器的权限太大。
搜索信息时,信息返回的正确性
M:
分散式存储结构IPFS(星际文件系统)
数据拥有者自己派送秘钥给请求者(ABE技术)
利用区块链与智能合约来实现有效的索引。
贡献:
结合IPFS、Ethereum、SM、ABE技术实现了细粒度用户访问和关键字的搜索功能
工作流程:
·DU注册被分配到相应的属性集中S
根据System Master key+S 得到SKs与SKd前者是用于查找的秘钥,后者是属性秘钥,用 Diffie-Hellman产生的key加密放到智能合约中,并通过安全通道将合约信息传给DU。
加密文本选择一个对称加密K,得到密文以及keyword,将密文上传到IPFS,得到hlocaltion 给DO,将K加密:Do 用K加密h—>CTh,再用system public k+access policy加密K–》CTk,再用ABE加密CTK和CTh.
索引通过system master k 与kw建立,传入合约
DU通过解密得到两个秘钥,根据感兴趣的kw产生币,并用智能合约查找,智能合约匹配成功则向用户返回相应交易id和key,
用自己的秘钥解密得到CTk与Cth,如果DU符合access policy则解密Ctk得到k,得到k后解密CTh得到h,通过h从IPFS下载相应的加密文件CTf,再用K解密文件得到源文件
解密文件与解密h用到了一个K。
总结和展望:
云中心----->分散存储系统(性能好,速度快,价格低)
PKG------->数据用户分发秘钥(ABE)
返回数据正确性问题------->BC+SM
未能实现访问策略的更新和用户属性撤销的功能。
分类:
应用:共识角度,隐私角度
解决方案:技术方案(名词)