Deep Learning 工具 Torch7安装与使用

本文档详细介绍了如何安装和使用Deep Learning工具Torch7,包括从源代码获取、Lua环境配置到使用Lua IDE进行调试的全过程。在安装过程中,首先安装node.js和gfx.js,接着通过curl命令安装Torch7。完成安装后,通过ZeroBrane Studio作为Lua的调试环境。通过运行监督学习的代码,展示了Torch7的基本用法,如nn和torch模块的使用,以及Tensor的操作。此外,还提到了如何利用GraphicsMagick读取和转换图片为Tensor,为后续的图像处理任务做准备。
摘要由CSDN通过智能技术生成
源代码:  https://github.com/torch
官方文档:  http://torch.ch/
Torch7:https://github.com/torch/torch7/wiki/Cheatsheet

安装过程:
1. node.js install, then gfx install, 要按照顺序
2. torch install
curl -sk https://raw.github.com/torch/ezinstall/master/install-deps | bash
curl -sk https://raw.github.com/torch/ezinstall/master/install-luajit+torch | bash
错误: Cannot find module 'express', 答案:npm install express
3. Lua IDE 调试环境
https://studio.zerobrane.com/doc-getting-started.html
4. 跑一遍监督学习的代码: 
  
  
  
  
注意代码使用sgd,跑tutorial中的数据大概在4-5轮结果就比较好,在92%左右,代码默认是一直跑。
代码中的一些api:
Tensor说明:https://github.com/torch/torch7/blob/master/doc/tensor.md
5. 如何读取图片,转换成Tensor:
https://github.com/clementfarabet/graphicsmagick
下一步打算使用这个包,进行图片读取和封装。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值