covariate shift现象以及解决方法

最近在重读paper《Batch Normalization》的时候,发现它在文中反复提到了一个概念“covariate shift”,而batch-Normalization的提出就是为了解决神经网络中(尤其是比较深的网络中的covariate shift现象)。我对这个概念很感兴趣,就花费时间去查了一些,今天在这里总结一下学到的东西。

首先我要来解释一下什么叫做covariate shift现象,这个指的是训练集的数据分布和预测集的数据分布不一致,这样的情况下如果我们在训练集上训练出一个分类器,肯定在预测集上不会取得比较好的效果。这种训练集和预测集样本分布不一致的问题就叫做“covariate shift”现象。比方说,我想训练一个模型根据人的血液样本来判断其有没有得血液病,对于负样本肯定就是收集一些血液病人的血液,但是对于正样本来说的话,其采样一定要合理,所采样例一定要满足整个人群中的分布。如果只采特定领域人群(比方说学校的学生)的血液作为正样本,那么我最终训练得到的模型,很难在所有人群中取得不错的效果,因为真实的预测集中学生只是正常人群中很少的一部分。(这个现象在迁移学习中也很常见)

要解决“covariate shift”问题,其实就是重新给训练集中的数据赋予一个新的权重即Reweight操作,比方说对于样本xi,它在训练集中的分布是q(xi),在预测集中的真实分布是p(xi),那么它的新权重就是p(xi)q(xi)。那么现在的问题就变成了如何确定样本xi在训练集和预测集中的真实分布。其实用的方法特别的巧妙,同样用的是机器学习的方法:Logistic Rgression,就是随机的从训练集和测试集随机的抽取样本,根据他们的来源不同,把来自训练集的样本标注为1,把来自预测集的样本标注为-1。把这份数据分成新的训练集和测试集,在训练集上训练模型,然后看该训练好的模型在测试集上的表现,如果表现的好,说明它能够很好的区分来自之前训练集和测试集的数据,就说明这些数据的分布不一致,反之亦然。具体的计算公式如下:
p(z=1|xi)=p(xi)p(xi)+q(xi) //z=1表示该样本来自于之前的预测集分布p,z=-1表示该样本来自于之前的训练集分布q。当训练好了Logistic Regression分类器之后,p(z=1|xi)=11+ef(xi),然后就很容易推出对于样本xi来说,它reweight的权值是p(z=1|xi)p(z=1|xi)=ef(xi),其中的f(xi)就是我们训练出来的分类器。

貌似感觉已经把covariate shift问题的解决方案讲完了,其实还有一个大前提,就是该用什么样的指标来判断是否已经出现了covariate shift现象(只有判断出现了covariate shift现象之后,才需要reweight样本权重,否则就不用了)。这里使用的指标叫做MCC(Matthews correlation coefficient),这个指标本质上是用一个训练集数据和预测集数据之间的相关系数,取值在[-1,1]之间,如果是1就是强烈的正相关,0就是没有相关性,-1就是强烈的负相关。它的具体计算和confusion matrix概念相关,下面来列举几个和confusion matrix相关的概念:
TP(True Positive):真实为1,预测为1
FN(False Negative):真实为1,预测为0
FP(False Positive):真实为0,预测为1
TN(True Negative):真实为0,预测为0
Mcc=TPTNFPFN(TP+FP)(TP+FN)(TN+FP)(TN+FN)
(PS:衡量二分类效果的几个指标,ACC(准确率),Rec(召回率),F值,AUC,MCC,它们各自对应了自己的应用场景)
通过计算Mcc,一般认为如果该值大于0.2,说明预测集和测试集相关度高,也就是说明分类器容易把在训练集上学习到的经验应用在预测集上,也就是说明出现了covariate shift的现象;如果小于0.2,就没有出现covariate shift现象。

没有更多推荐了,返回首页