P4978 题解

本文介绍了一种解决两人出牌游戏问题的方法,利用数组存储牌局情况,通过排序和二分查找技术,结合快速幂计算和求逆元,高效地找出可能的出牌组合。
摘要由CSDN通过智能技术生成

## 思路

首先,枚举两个端点显然很慢,我们先用 $c$ 数组和 $d$ 数组来存两个人出牌的所有情况。

$c$ 数组与 $d$ 数组排序。

此时 $c$ 数组和 $d$ 数组的大小分别是 $\dfrac{(n + 1) \times n}{2}$$\dfrac{(m + 1) \times m}{2}$。直接一个个枚举显然是不行的,我们可以枚举 $d$ 数组,然后二分 $c$ 数组,找到大于 $d_i$ 的第一个数 $l$。因为 $c$ 数组满足单调性(排序过),所以只要 $ans \gets ans + (\dfrac{(n + 1) \times n}{2} - l + 1)$

不会费马小定理的同学可以去这题学习一下,这里就不再证明。最后输出的答案为 $ans \times cnt^{p - 2} \mod p$。此时 $cnt = \dfrac{(n + 1) \times n \times (m + 1) \times m}{4}$$p = 998244353$。因为 $p$ 很大,需要使用快速幂

一定要开 `long long`!

## 关键部分代码


#define int long long
int p = 998244353;
//快速幂
int pow(int n,int m) {
    int ans = 1;
    while(m) {
        if(m & 1) {
            ans *= n;
            ans %= p;
        }
        n *= n;
        n %= p;
        m >>= 1;
    }
    return ans;
}
//求逆元
int niyuan(int n) {
    return pow(n,p - 2);
}
int n,m,a[2005],b[2005],c[4000005],d[4000005],cnt = 0,cnt1 = 0,ans = 0;
signed main() {
    n = read(),m = read();
    int sum = n * (n + 1) / 2; 
    sum %= p;
    sum *=  m * (m + 1) / 2;
    sum %= p;
    //前缀和 
    for(int i = 1;i <= n;i++) a[i] = read() + a[i - 1];
    for(int i = 1;i <= m;i++) b[i] = read() + b[i - 1];
    for(int i = 1;i <= n;i++) {
        for(int j = i;j <= n;j++) {
            c[++cnt] = a[j] - a[i - 1];
        }
    } 
    for(int i = 1;i <= m;i++) {
        for(int j = i;j <= m;j++) {
            d[++cnt1] = b[j] - b[i - 1];
        }
    } 
    sort(c + 1,c + cnt + 1);
    sort(d + 1,d + cnt1 + 1);
    //枚举 d 数组
    for(int i = 1;i <= cnt1;i++) {
        int l = 1,r = cnt,mid;
        //二分 c 数组
        while(l < r) {
            mid = (l + r) >> 1;
            if(c[mid] > d[i]) r = mid;
            else l = mid + 1;
        }
        if(c[l] > d[i]) {
            ans += (cnt - l + 1);
        }
        ans %= p;
    }
    write(ans * niyuan(sum) % p);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值