matlab 中跑ap聚类

在ap官方网站上下 matlab代码 apcluster.m。
放到C:\Documents and Settings\gushui\My Documents\MATLAB下
把生成的相似值的那个文件simForAP.txt也放在这个文件夹下C:\Documents and Settings\gushui\My Documents\MATLAB

打开matlab
>>load (注意后面有一个空格,这样不输出结果?)
这样simForAP.txt就load进来了
>>s=simForAp (注意后面有一个空格,把simForAp赋给s)
>>p=0.028115 (这个值可以参照prefForAP.txt的值)
>>[idx,netsim,dpsim,expref]=apcluster(s,p,varargin)
>>idx 这个就是生成的那个result
### AP 聚类算法简介 Affinity Propagation (AP) 是一种基于消息传递的聚类算法,能够自动确定数据集的簇数量。该方法通过在数据点之间交换信息来识别具有代表性的样本作为 exemplar,并将其他数据点分配给这些 exemplar。 ### MATLAB AP 聚类实现 MATLAB 提供了多种方式来实现 AP 聚类算法。下面是一个简单的例子,展示了如何使用 `apcluster` 函数来进行 Affinity Propagation 聚类: ```matlab % 生成随机二维数据点 X = randn(100, 2); % 计算相似度矩阵 S S = -pdist(X).^2; % 将距离转换为相似度(负欧氏距离平方) maxSim = max(S); minSim = min(S); S = reshape(S, length(X), length(X)); S = exp((S-minSim)/(maxSim-minSim)); % 设置偏好值 p (可以调整此参数影响簇的数量) preferences = median(S(:)) * ones(size(S)); % 运行 AP 聚类算法 [exemplars, ~, info] = apcluster('euclidean', preferences, X); % 可视化结果 figure; gscatter(X(:,1), X(:,2), exemplars); title('AP Clustering Results'); xlabel('Feature 1'); ylabel('Feature 2'); hold on; plot(X(exemplars==unique(exemplars)', :)); % 高亮显示 exemplars legend('Data Points', 'Exemplars'); ``` 上述代码实现了基本的 AP 聚类过程并可视化了结果。需要注意的是,在实际应用可能需要根据具体的数据特点调整相似度计算方式以及偏好值的选择[^1]。 对于更复杂的场景或者想要深入了解 AP 算法的工作原理,建议查阅官方文档或者其他学术资源获取更多细节[^2]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值